• 제목/요약/키워드: HIF-1

검색결과 204건 처리시간 0.025초

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Effects of long-term tubular HIF-2α overexpression on progressive renal fibrosis in a chronic kidney disease model

  • Dal-Ah Kim;Mi-Ran Lee;Hyung Jung Oh;Myong Kim;Kyoung Hye Kong
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.196-201
    • /
    • 2023
  • Renal fibrosis is the final manifestation of chronic kidney disease (CKD) regardless of etiology. Hypoxia-inducible factor-2 alpha (HIF-2α) is an important regulator of chronic hypoxia, and the late-stage renal tubular HIF-2α activation exerts protective effects against renal fibrosis. However, its specific role in progressive renal fibrosis remains unclear. Here, we investigated the effects of the long-term tubular activation of HIF-2α on renal function and fibrosis, using in vivo and in vitro models of renal fibrosis. Progressive renal fibrosis was induced in renal tubular epithelial cells (TECs) of tetracycline-controlled HIF-2α transgenic (Tg) mice and wild-type (WT) controls through a 6-week adenine diet. Tg mice were maintained on doxycycline (DOX) for the diet period to induce Tg HIF-2α expression. Primary TECs isolated from Tg mice were treated with DOX (5 ㎍/ml), transforming growth factor-β1 (TGF-β1) (10 ng/ml), and a combination of both for 24, 48, and 72 hr. Blood was collected to analyze creatinine (Cr) and blood urea nitrogen (BUN) levels. Pathological changes in the kidney tissues were observed using hematoxylin and eosin, Masson's trichrome, and Sirius Red staining. Meanwhile, the expression of fibronectin, E-cadherin and α-smooth muscle actin (α-SMA) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was observed using western blotting. Our data showed that serum Cr and BUN levels were significantly lower in Tg mice than in WT mice following the adenine diet. Moreover, the protein levels of fibronectin and E-cadherin and the phosphorylation of p38 MAPK were markedly reduced in the kidneys of adenine-fed Tg mice. These results were accompanied by attenuated fibrosis in Tg mice following adenine administration. Consistent with these findings, HIF-2α overexpression significantly decreased the expression of fibronectin in TECs, whereas an increase in α-SMA protein levels was observed after TGF-β1 stimulation for 72 hr. Taken together, these results indicate that long-term HIF-2α activation in CKD may inhibit the progression of renal fibrosis and improve renal function, suggesting that long-term renal HIF-2α activation may be used as a novel therapeutic strategy for the treatment of CKD.

1-Benzyl indazole derivative-based 18F-labeled PET radiotracer: Radiosynthesis and cell uptake study in cancer cells

  • More, Kunal N.;Lee, Jun Young;Park, Jeong-Hoon;Chang, Dong-Jo
    • 대한방사성의약품학회지
    • /
    • 제5권1호
    • /
    • pp.36-47
    • /
    • 2019
  • Hypoxia-inducible factor-1 ($HIF-1{\alpha}$) is a transcription factor activated in response to low oxygen level, and is highly expressed in many solid tumors. Moreover, $HIF-1{\alpha}$ is a representative biomarker of hypoxia and also helps to maintain cell homeostasis under hypoxic condition. Most solid tumors show hypoxia, which induces poor prognosis and resistance to conventional cancer therapies. Thus, early diagnosis of hypoxia with positron emission tomography (PET) radiotracer would be highly beneficial for management of malignant solid tumors with effective cancer therapy. YC-1 is a most promising candidate among several $HIF-1{\alpha}$ inhibitors. As an effort to develop a hypoxia imaging tool as a PET radiotracer, we designed and synthesized [$^{18}F$]DFYC based on potent derivative of YC-1 and performed preliminary in vitro cell uptake study. [$^{18}F$]DFYC showed a significant accumulation in SKBR-3 cells among other cancer cells, proving as a good lead to develop a hypoxic solid tumor such as breast cancer.

Influence of Ionizing Radiation on Ovarian Carcinoma SKOV-3 Xenografts in Nude Mice under Hypoxic Conditions

  • Zhang, Yong-Chun;Jiang, Gang;Gao, Han;Liu, Hua-Min;Liang, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2353-2358
    • /
    • 2014
  • Purpose: We aimed to detect the expression of HIF-1${\alpha}$, VEGF, HPSE-1 and CD31 in SKOV3 xenografts in nude mice treated with different doses of ionizing radiation, trying to explore the possible mechanism of hypoxia and radioresistance. Methods: Nude mice bearing SKOV3 xenografts were randomly divided into 4 groups: Group A (control group, no ionizing radiation), Group B (treated with low dose of ionizing radiation: 50cGy), Group C (treated with high dose of ionizing radiation: 300cGy), Group D ( combined ionizing radiation, treated with ionizing radiation from low dose to high dose : 50cGy first and 300cGy after 6h interval). The mRNA levels of HIF-1 and VEGF in each group were detected by real time polymerase chain reaction, while HPSE-1 expression was measured by ELISA. The microvessel density (MVD) and hypoxic cells were determined through immunohistochemical (IHC) staining of CD31 and HIF-1a. Results: Significant differences of HIF-1${\alpha}$ mRNA level could be found among the 4 groups (F=74.164, P<0.001): Group C>Group A>Group D> Group B. The mRNA level of VEGF in Group C was significantly higher than in the other three groups (t=-5.267, P=0.000), while no significant difference was observed among Group A, B and D (t=1.528, 1.588; P=0.205, 0.222). In addition, the MVD was shown to be the highest in Group C (t=6.253, P=0.000), whereas the HPSE-1 level in Group A was lower than in Group B (t=14.066, P=0.000) and higher than in Group C (t=-21.919, P=0.000), and similar with Group D (t=-2.066, P=0.058). Through IHC staining of HIF-1a, the expression of hypoxic cells in Group A was (++), Group B was (+), Group C was (+++) and Group D was (+). Conclusion: Ionizing radiation with lowerdoses might improve tumor hypoxia through inhibiting the expression of HIF-1 and HPSE-1, whereas higherdoses worsen tumor hypoxic conditions by up-regulating HIF-1${\alpha}$, HPSE-1, VEGF and CD31 levels. A protocol of low-dose ionizing radiation followed by a high-dose irradiation might at least partly improve tumor hypoxia and enhance radiosensitivity.

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1

  • Ruthenborg, Robin J.;Ban, Jae-Jun;Wazir, Anum;Takeda, Norihiko;Kim, Jung-Whan
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.637-643
    • /
    • 2014
  • Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

Serial Expression of Hypoxia Inducible Factor-$1{\alpha}$ and Neuronal Apoptosis in Hippocampus of Rats with Chronic Ischemic Brain

  • Yu, Chi-Ho;Moon, Chang-Taek;Sur, Jung-Hyang;Chun, Young-Il;Choi, Won-Ho;Yhee, Ji-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권6호
    • /
    • pp.481-485
    • /
    • 2011
  • Objective : The purpose of this study is to investigate serial changes of hypoxia-inducible factor $1{\alpha}$ (HIF-$1{\alpha}$), as a key regulator of hypoxic ischemia, and apoptosis of hippocampus induced by bilateral carotid arteries occlusion (BCAO) in rats. Methods : Adult male Wistar rats were subjected to the permanent BCAO. The time points studied were 1, 2, 4, 8, and 12 weeks after occlusions, with n=6 animals subjected to BCAO, and n=2 to sham operation at each time point, and brains were fixed by intracardiac perfusion fixation with 4% neutral-buffered praraformaldehyde for brain section preparation. Immunohistochemistry (IHC), western blot and terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to evaluate HIF-$1{\alpha}$ expression and apoptosis. Results : In IHC and western blot, HIF-$1{\alpha}$ levels were found to reach the peak at the 2nd week in the hippocampus, while apoptotic neurons, in TUNEL assay, were maximal at the 4th week in the hippocampus, especially in the cornu ammonis 1 (CA1) region. HIF-$1{\alpha}$ levels and apoptosis were found to fluctuate during the time course. Conclusion : This study showed that BCAO induces acute ischemic responses for about 4 weeks then chronic ischemia in the hippocampus. These in vivo data are the first to show the temporal sequence of apoptosis and HIF-$1{\alpha}$ expression.

저산소환경에 의한 송사리(Oryzias dancena)의 Stanniocalcin-2와 Hypoxia-Inducible Factor-1α mRNA 발현의 변화 (Changes in Stanniocalcin-2 and Hypoxia-Inducible Factor-1α mRNA Expression in Medaka Oryzias dancena Exposed to Acute Hypoxia)

  • 신지혜;손영창
    • 한국수산과학회지
    • /
    • 제46권1호
    • /
    • pp.70-76
    • /
    • 2013
  • Some fish live in aquatic environments with low or temporally changing $O_2$ availability. Variation in dissolved oxygen (DO) levels requires behavioral, physiological, and biochemical adaptations to ensure the uptake of sufficient $O_2$. Several species are relatively well adapted to tolerate low $O_2$ partial pressures (hypoxia). The medaka (Oryzias dancena ) is an important model organism for biomedical research that shows remarkable tolerance to hypoxia. We investigated the regulation and role of hypoxia-inducible factor-1 (HIF-$1{\alpha}$) as a general hypoxia-response gene and stanniocalcin-2 (STC2), which is one of the genes regulated by HIF-$1{\alpha}$ in mammals under hypoxia. We subjected adult male medaka to the following three acute hypoxia regimes: 1, 24, and 72 h at DO = $1.8{\pm}0.5$ ppm. The changes in STC2 and HIF-$1{\alpha}$ mRNA were monitored using quantitative real-time reverse-transcription PCR. We found strong upregulation of HIF-$1{\alpha}$ mRNA in the livers of fish exposed to hypoxia. Hypoxia rapidly upregulated STC-2 mRNA expression in muscle, but not in the brain, gills, liver, or intestine. Therefore, unlike in mammals, hypoxia might regulate O. dancena STC-2 expression in an HIF-$1{\alpha}$-independent manner.

Dimethyloxaloylglycine promotes spermatogenesis activity of spermatogonial stem cells in Bama minipigs

  • Cao, Yaqi;Dai, ZiFu;Lao, Huizhen;Zhao, Huimin
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.35.1-35.13
    • /
    • 2022
  • Background: The testis has been reported to be a naturally O2-deprived organ, dimethyloxaloylglycine (DMOG) can inhibit hypoxia inducible factor-1alpha (HIF-1α) subject to degradation under normal oxygen condition in cells. Objectives: The objective of this study is to detect the effects of DMOG on the proliferation and differentiation of spermatogonial stem cells (SSCs) in Bama minipigs. Methods: Gradient concentrations of DMOG were added into the culture medium, HIF-1α protein in SSCs was detected by western blot analysis, the relative transcription levels of the SSC-specific genes were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Six days post-induction, the genes related to spermatogenesis were detected by qRT-PCR, and the DNA content was determined by flow cytometry. Results: Results revealed that the levels of HIF-1α protein increased in SSCs with the DMOG treatment in a dose-dependent manner. The relative transcription levels of SSC-specific genes were significantly upregulated (p < 0.05) by activating HIF-1α expression. The induction results showed that DMOG significantly increased (p < 0.05) the spermatogenesis capability of SSCs, and the populations of haploid cells significantly increased (p < 0.05) in DMOG-treated SSCs when compared to those in DMOG-untreated SSCs. Conclusion: We demonstrate that DMOG can promote the spermatogenesis activity of SSCs.

Panax Ginseng inhibited HIF-1a activation and inflammatory cytokine in HMC-1 cells activated by phorbol myristate acetate and A23187

  • Choi, In-Young;Jeong, Hyun-Ja;An, Hyo-Jin;Kang, Tae-Hee;Zo, Chul-Won;Song, Bong-Keun;Park, Eun-Jeong;Kim, Eun-Cheol;Um, Jae-Young;Kim, Hyung-Min;Hong, Seung-Heon
    • Advances in Traditional Medicine
    • /
    • 제8권4호
    • /
    • pp.440-447
    • /
    • 2008
  • This study investigated the role of Panax ginseng (PG) on the phorbol myristate acetate (PMA) + calcium ionophore A23187-induced hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) activation, phosphorylation of the extracellular signal-regulated kinase (ERK), and inflammatory cytokine production from the human mast cell line, HMC-1. HIF-$1{\alpha}$ and phosphorylation of ERK were observed by Western blotting. The inflammatory cytokine production was determined by enzyme-linked immunosorbent assay. PG inhibited the PMA+A23187-induced HIF-$1{\alpha}$ expression and the subsequent production of vascular endothelial growth factor. In addition, PG suppressed PMA + A23187-induced phosphorylation of ERK. We also show that the increased cytokines interleukin (IL)-$1{\beta}$, IL-6, and tumour necrosis factor-${\alpha}$ level was significantly inhibited by treatment of PG. In the present study, we report for the first time that PG is an inhibitor of HIF-$1{\alpha}$ and cytokines on the mast cell-mediated inflammatory responses.

Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway

  • Han, Na-Ra;Ko, Seong-Gyu;Moon, Phil-Dong;Park, Hi-Joon
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.610-616
    • /
    • 2021
  • Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.