DOI QR코드

DOI QR Code

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1

  • Ruthenborg, Robin J. (Department of Molecular and Cell Biology, The University of Texas at Dallas) ;
  • Ban, Jae-Jun (Department of Molecular and Cell Biology, The University of Texas at Dallas) ;
  • Wazir, Anum (Department of Molecular and Cell Biology, The University of Texas at Dallas) ;
  • Takeda, Norihiko (Department of Cardiovascular Medicine, University of Tokyo) ;
  • Kim, Jung-Whan (Department of Molecular and Cell Biology, The University of Texas at Dallas)
  • Received : 2014.06.05
  • Accepted : 2014.06.08
  • Published : 2014.09.30

Abstract

Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

Keywords

References

  1. Ahluwalia, A., and Tarnawski, A.S. (2012). Critical role of hypoxia sensor--HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr. Med. Chem. 19, 90-97. https://doi.org/10.2174/092986712803413944
  2. Andrikopoulou, E., Zhang, X., Sebastian, R., Marti, G., Liu, L., Milner, S.M., and Harmon, J.W. (2011). Current Insights into the role of HIF-1 in cutaneous wound healing. Curr. Mol. Med. 11, 218-235. https://doi.org/10.2174/156652411795243414
  3. Asada, N., Takase, M., Nakamura, J., Oguchi, A., Asada, M., Suzuki, N., Yamamura, K., Nagoshi, N., Shibata, S., Rao, T.N., et al. (2011). Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981-3990. https://doi.org/10.1172/JCI57301
  4. Barriga, E.H., Maxwell, P.H., Reyes, A.E., and Mayor, R. (2013). The hypoxia factor Hif-1alpha controls neural crest chemotaxis and epithelial to mesenchymal transition. J. Cell Biol. 201, 759-776. https://doi.org/10.1083/jcb.201212100
  5. Basu, R.K., Hubchak, S., Hayashida, T., Runyan, C.E., Schumacker, P.T., and Schnaper, H.W. (2011). Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am. J. Physiol. Renal Physiol. 300, F898-905. https://doi.org/10.1152/ajprenal.00335.2010
  6. Berra, E., Roux, D., Richard, D.E., and Pouyssegur, J. (2001). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2, 615-620. https://doi.org/10.1093/embo-reports/kve130
  7. Beuck, S., Schanzer, W., and Thevis, M. (2012). Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesisstimulating agents in current and preventive doping analysis. Drug Test. Anal. 4, 830-845. https://doi.org/10.1002/dta.390
  8. Botusan, I.R., Sunkari, V.G., Savu, O., Catrina, A.I., Grunler, J., Lindberg, S., Pereira, T., Yla-Herttuala, S., Poellinger, L., Brismar, K., et al. (2008). Stabilization of HIF-1 alpha is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. USA 105, 19426-19431. https://doi.org/10.1073/pnas.0805230105
  9. Catrina, S.B., Okamoto, K., Pereira, T., Brismar, K., and Poellinger, L. (2004). Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53, 3226-3232. https://doi.org/10.2337/diabetes.53.12.3226
  10. Ceradini, D.J., and Gurtner, G.C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc. Med. 15, 57-63. https://doi.org/10.1016/j.tcm.2005.02.002
  11. Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P., and Gurtner, G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858-864. https://doi.org/10.1038/nm1075
  12. Cramer, T., Yamanishi, Y., Clausen, B.E., Forster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., et al. (2003). HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657. https://doi.org/10.1016/S0092-8674(03)00154-5
  13. De Luca, M., Pellegrini, G., Zambruno, G., and Marchisio, P.C. (1994). Role of integrins in cell adhesion and polarity in normal keratinocytes and human skin pathologies. J. Dermatol. 21, 821-828. https://doi.org/10.1111/j.1346-8138.1994.tb03296.x
  14. Elson, D.A., Ryan, H.E., Snow, J.W., Johnson, R., and Arbeit, J.M. (2000). Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60, 6189-6195.
  15. Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613.
  16. Gao, W., Ferguson, G., Connell, P., Walshe, T., Murphy, R., Birney, Y.A., O'Brien, C., and Cahill, P.A. (2007). High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J. Mol. Cell. Cardiol. 42, 609-619. https://doi.org/10.1016/j.yjmcc.2006.12.006
  17. Higgins, D.F., Kimura, K., Bernhardt, W.M., Shrimanker, N., Akai, Y., Hohenstein, B., Saito, Y., Johnson, R.S., Kretzler, M., Cohen, C.D., et al. (2007). Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810-3820.
  18. Hoffman, E.C., Reyes, H., Chu, F.F., Sander, F., Conley, L.H., Brooks, B.A., and Hankinson, O. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954-958. https://doi.org/10.1126/science.1852076
  19. Hong, W.X., Hu, M.S., Esquivel, M., Liang, G.Y., Rennert, R.C., McArdle, A., Paik, K.J., Duscher, D., Gurtner, G.C., Lorenz, H.P., et al. (2014). The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care 3, 390-399. https://doi.org/10.1089/wound.2013.0520
  20. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468. https://doi.org/10.1126/science.1059817
  21. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. https://doi.org/10.1126/science.1059796
  22. Kalucka, J., Ettinger, A., Franke, K., Mamlouk, S., Singh, R.P., Farhat, K., Muschter, A., Olbrich, S., Breier, G., Katschinski, D.M., et al. (2013). Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice. Mol. Cell. Biol. 33, 3426-3438. https://doi.org/10.1128/MCB.00609-13
  23. Kaminski, N., and Rosas, I.O. (2006). Gene expression profiling as a window into idiopathic pulmonary fibrosis pathogenesis: can we identify the right target genes? Proc. Am. Thorac. Soc. 3, 339-344.
  24. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabol. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  25. Kimura, K., Iwano, M., Higgins, D.F., Yamaguchi, Y., Nakatani, K., Harada, K., Kubo, A., Akai, Y., Rankin, E.B., Neilson, E.G., et al. (2008). Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023-1029. https://doi.org/10.1152/ajprenal.90209.2008
  26. Koch, L.G., and Britton, S.L. (2008). Aerobic metabolism underlies complexity and capacity. J. Physiol. 586, 83-95. https://doi.org/10.1113/jphysiol.2007.144709
  27. Kottmann, R.M., Kulkarni, A.A., Smolnycki, K.A., Lyda, E., Dahanayake, T., Salibi, R., Honnons, S., Jones, C., Isern, N.G., Hu, J.Z., et al. (2012). Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pHdependent activation of transforming growth factor-beta. Am. J. Respir. Crit. Care Med. 186, 740-751. https://doi.org/10.1164/rccm.201201-0084OC
  28. Labrecque, M.P., Prefontaine, G.G., and Beischlag, T.V. (2013). The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces. Curr. Mol. Med. 13, 1047-1065. https://doi.org/10.2174/15665240113139990042
  29. Lee, K., and Nelson, C.M. (2012). New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int. Rev. Cell Mol. Biol. 294, 171-221. https://doi.org/10.1016/B978-0-12-394305-7.00004-5
  30. Li, J., Chen, J., and Kirsner, R. (2007). Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9-18. https://doi.org/10.1016/j.clindermatol.2006.09.007
  31. Lokmic, Z., Musyoka, J., Hewitson, T.D., and Darby, I.A. (2012). Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol. 296, 139-185. https://doi.org/10.1016/B978-0-12-394307-1.00003-5
  32. Loomis-King, H., Flaherty, K.R., and Moore, B.B. (2013). Pathogenesis, current treatments and future directions for idiopathic pulmonary fibrosis. Curr. Opin. Pharmacol. 13, 377-385. https://doi.org/10.1016/j.coph.2013.03.015
  33. Maher, T.M. (2012). Idiopathic pulmonary fibrosis: pathobiology of novel approaches to treatment. Clin. Chest Med. 33, 69-83. https://doi.org/10.1016/j.ccm.2011.11.002
  34. Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. https://doi.org/10.1038/20459
  35. Moulik, P.K., Mtonga, R., and Gill, G.V. (2003). Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care 26, 491-494. https://doi.org/10.2337/diacare.26.2.491
  36. Murdoch, C., Muthana, M., and Lewis, C.E. (2005). Hypoxia regulates macrophage functions in inflammation. J. Immunol. 175, 6257-6263. https://doi.org/10.4049/jimmunol.175.10.6257
  37. Myllyharju, J. (2009). HIF prolyl 4-hydroxylases and their potential as drug targets. Curr. Pharm. Des. 15, 3878-3885. https://doi.org/10.2174/138161209789649457
  38. Myllyharju, J. (2013). Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol. 208, 148-165. https://doi.org/10.1111/apha.12096
  39. Noble, P.W., Barkauskas, C.E., and Jiang, D.H. (2012). Pulmonary fibrosis: patterns and Perpetrators. J. Clin. Invest. 122, 2756-2762. https://doi.org/10.1172/JCI60323
  40. Ohh, M., Park, C.W., Ivan, M., Hoffman, M.A., Kim, T.Y., Huang, L.E., Pavletich, N., Chau, V., and Kaelin, W.G. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423-427. https://doi.org/10.1038/35017054
  41. Pan, X., Suzuki, N., Hirano, I., Yamazaki, S., Minegishi, N., and Yamamoto, M. (2011). Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 6, e25839. https://doi.org/10.1371/journal.pone.0025839
  42. Pichiule, P., Chavez, J.C., and LaManna, J.C. (2004). Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J. Biol. Chem. 279, 12171-12180. https://doi.org/10.1074/jbc.M305146200
  43. Remensnyder, J.P., and Majno, G. (1968). Oxygen gradients in healing wounds. Am. J. Pathol. 52, 301-323.
  44. Schafer, M., and Werner, S. (2008). Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 58, 165-171. https://doi.org/10.1016/j.phrs.2008.06.004
  45. Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
  46. Semenza, G.L., and Wang, G.L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447-5454. https://doi.org/10.1128/MCB.12.12.5447
  47. Taraboletti, G., D'Ascenzo, S., Giusti, I., Marchetti, D., Borsotti, P., Millimaggi, D., Giavazzi, R., Pavan, A., and Dolo, V. (2006). Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8, 96-103. https://doi.org/10.1593/neo.05583
  48. Taylor, C.T., and McElwain, J.C. (2010). Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272-279. https://doi.org/10.1152/physiol.00029.2010
  49. Tepper, O.M., Capla, J.M., Galiano, R.D., Ceradini, D.J., Callaghan, M.J., Kleinman, M.E., and Gurtner, G.C. (2005). Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105, 1068-1077.
  50. Thangarajah, H., Vial, I.N., Grogan, R.H., Yao, D.C., Shi, Y.B., Januszyk, M., Galiano, R.D., Chang, E.I., Galvez, M.G., Glotzbach, J.P., et al. (2010). HIF-1 alpha dysfunction in diabetes. Cell Cycle 9, 75-79. https://doi.org/10.4161/cc.9.1.10371
  51. Tuder, R.M., Lara, A.R., and Thannickal, V.J. (2012). Lactate, a novel trigger of transforming growth factor-beta activation in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186, 701-703. https://doi.org/10.1164/rccm.201208-1491ED
  52. Tzouvelekis, A., Harokopos, V., Paparountas, T., Oikonomou, N., Chatziioannou, A., Vilaras, G., Tsiambas, E., Karameris, A., Bouros, D., and Aidinis, V. (2007). Comparative expression profiling in pulmonary fibrosis suggests a role of hypoxia-inducible factor-1alpha in disease pathogenesis. Am. J. Respir. Crit. Care Med. 176, 1108-1119. https://doi.org/10.1164/rccm.200705-683OC
  53. Wang, G.L., and Semenza, G.L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513-21518.
  54. Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  55. Watson, C.J., Collier, P., Tea, I., Neary, R., Watson, J.A., Robinson, C., Phelan, D., Ledwidge, M.T., McDonald, K.M., McCann, A., et al. (2014). Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 23, 2176-2188. https://doi.org/10.1093/hmg/ddt614
  56. Weidemann, A., and Johnson, R.S. (2008). Biology of HIF-1 alpha. Cell Death Differ. 15, 621-627. https://doi.org/10.1038/cdd.2008.12
  57. Yamakawa, M., Liu, L.X., Date, T., Belanger, A.J., Vincent, K.A., Akita, G.Y., Kuriyama, T., Cheng, S.H., Gregory, R.J., and Jiang, C. (2003). Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 93, 664-673. https://doi.org/10.1161/01.RES.0000093984.48643.D7
  58. Zeisberg, M., and Kalluri, R. (2013). Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216-C225. https://doi.org/10.1152/ajpcell.00328.2012
  59. Zhang, H., Akman, H.O., Smith, E.L., Zhao, J., Murphy-Ullrich, J.E., and Batuman, O.A. (2003). Cellular response to hypoxia involves signaling via Smad proteins. Blood 101, 2253-2260. https://doi.org/10.1182/blood-2002-02-0629
  60. Zhang, X., Yan, X., Cheng, L., Dai, J., Wang, C., Han, P., and Chai, Y. (2013). Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice. PLoS One 8, e84548. https://doi.org/10.1371/journal.pone.0084548

Cited by

  1. Phosphatase and tensin homolog deleted on chromosome 10 contributes to phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis via multiple pathways vol.241, pp.2, 2016, https://doi.org/10.1177/1535370215600100
  2. Impairment of hypoxia-induced HIF-1α signaling in keratinocytes and fibroblasts by sulfur mustard is counteracted by a selective PHD-2 inhibitor vol.90, pp.5, 2016, https://doi.org/10.1007/s00204-015-1549-y
  3. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis vol.16, pp.1, 2015, https://doi.org/10.1186/s12931-015-0286-3
  4. Insight from the Air–Skin Interface vol.135, pp.2, 2015, https://doi.org/10.1038/jid.2014.457
  5. Hypoxia-inducible factor 1 in autoimmune diseases vol.303, 2016, https://doi.org/10.1016/j.cellimm.2016.04.001
  6. Hypoxia and inflammatory bowel disease vol.19, pp.3, 2017, https://doi.org/10.1016/j.micinf.2016.09.004
  7. Wound healing process and dipeptidyl peptidase IV vol.53, pp.1, 2017, https://doi.org/10.21860/medflum2017_173375
  8. Mini-encyclopaedia of the wound healing - Opportunities for integrating multi-omic approaches into medical practice 2017, https://doi.org/10.1016/j.jprot.2017.07.017
  9. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? vol.51, 2016, https://doi.org/10.1016/j.matbio.2016.01.012
  10. Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity vol.2017, 2017, https://doi.org/10.1155/2017/2578017
  11. Dysregulation of wound healing mechanisms in diabetes and the importance of negative pressure wound therapy (NPWT) 2017, https://doi.org/10.1002/dmrr.2929
  12. Advances in the treatment of chronic wounds: a patent review vol.25, pp.8, 2015, https://doi.org/10.1517/13543776.2015.1045879
  13. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications vol.20, pp.12, 2015, https://doi.org/10.3390/molecules201119717
  14. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169155
  15. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway vol.39, pp.1, 2017, https://doi.org/10.3892/ijmm.2016.2816
  16. Exploring Wound-Healing Genomic Machinery with a Network-Based Approach vol.10, pp.2, 2017, https://doi.org/10.3390/ph10020055
  17. HIF-1α Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2 vol.25, pp.7, 2017, https://doi.org/10.1016/j.ymthe.2017.04.007
  18. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats vol.340, pp.1, 2017, https://doi.org/10.1016/j.crvi.2016.11.001
  19. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications vol.61, pp.8, 2016, https://doi.org/10.1088/0031-9155/61/8/R90
  20. Paeoniflorin alleviates liver fibrosis by inhibiting HIF-1α through mTOR-dependent pathway vol.99, 2014, https://doi.org/10.1016/j.fitote.2014.10.009
  21. Limited mouth opening in oral submucous fibrosis: reasons, ramifications, and remedies vol.46, pp.6, 2017, https://doi.org/10.1111/jop.12513
  22. Notch1 Signaling Contributes to Hypoxia-induced High Expression of Integrin β1 in Keratinocyte Migration vol.7, 2017, https://doi.org/10.1038/srep43926
  23. BNIP3 promotes the motility and migration of keratinocyte under hypoxia vol.26, pp.5, 2017, https://doi.org/10.1111/exd.13248
  24. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing vol.286, pp.3, 2015, https://doi.org/10.1016/j.taap.2015.04.015
  25. Hypoxia-sensitive pathways in inflammation-driven fibrosis vol.307, pp.12, 2014, https://doi.org/10.1152/ajpregu.00349.2014
  26. Adipose-Derived Tissue in the Treatment of Dermal Fibrosis pp.0148-7043, 2018, https://doi.org/10.1097/SAP.0000000000001278
  27. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-017-02375-6
  28. Autologous blood transfusion augments impaired wound healing in diabetic mice by enhancing lncRNA H19 expression via the HIF-1α signaling pathway vol.16, pp.1, 2018, https://doi.org/10.1186/s12964-018-0290-6
  29. Early redox activities modulate Xenopus tail regeneration vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-06614-2
  30. PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32575-z
  31. BAMBI is a novel HIF1-dependent modulator of TGFβ-mediated disruption of cell polarity during hypoxia vol.131, pp.10, 2018, https://doi.org/10.1242/jcs.210906
  32. Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO2) particles in a mouse bioassay vol.92, pp.5, 2018, https://doi.org/10.1007/s00204-018-2188-x
  33. Von Hippel-Lindau (VHL) Protein Antagonist VH298 Improves Wound Healing in Streptozotocin-Induced Hyperglycaemic Rats by Activating Hypoxia-Inducible Factor- (HIF-) 1 Signalling vol.2019, pp.2314-6753, 2019, https://doi.org/10.1155/2019/1897174
  34. Inhibition of cyclooxygenase-2 prevents intra-abdominal adhesions by decreasing activity of peritoneal fibroblasts vol.9, pp.None, 2014, https://doi.org/10.2147/dddt.s80221
  35. The role of hypoxia-inducible factorin the syndrome of chronic lower limb ischemia and influence of diabetes mellitus on process of angiogenesis vol.16, pp.3, 2014, https://doi.org/10.24884/1682-6655-2017-16-3-4-9
  36. DETERMINATION OF BREAKDOWN OF PRODUCTION OF ACTIVE FORMS OF OXYGEN AND CONTENT OF LIPIDS HYDROPEROXIDES IN HOMOGENATES OF CICATRICAL TISSUES IN DIFFERENT TERMS OF POSTALOPERATIVE PERIOD vol.2018, pp.4, 2014, https://doi.org/10.29254/2077-4214-2018-4-1-146-95-98
  37. FG-4592 Accelerates Cutaneous Wound Healing by Epidermal Stem Cell Activation via HIF-1α Stabilization vol.46, pp.6, 2014, https://doi.org/10.1159/000489652
  38. Level change features of a hypoxia-induced factor 1α in patients with critical lower limb ischemia vol.17, pp.3, 2014, https://doi.org/10.24884/1682-6655-2018-17-3-102-106
  39. MicroRNA-126 regulates Hypoxia-Inducible Factor-1α which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-43689-3
  40. Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-52310-6
  41. Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism vol.13, pp.1, 2019, https://doi.org/10.1080/19336918.2019.1638691
  42. Transcriptome Analysis Reveals That Alfalfa Promotes Rumen Development Through Enhanced Metabolic Processes and Calcium Transduction in Hu Lambs vol.10, pp.None, 2014, https://doi.org/10.3389/fgene.2019.00929
  43. Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration vol.10, pp.3, 2014, https://doi.org/10.1038/s41419-019-1473-9
  44. Postpartum Gynetresia vol.30, pp.1, 2014, https://doi.org/10.14734/pn.2019.30.1.36
  45. Hypoxia‐inducible factor 1‐alpha (HIF‐1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction vol.20, pp.5, 2014, https://doi.org/10.1111/obr.12828
  46. Pathological mechanisms and therapeutic outlooks for arthrofibrosis vol.7, pp.None, 2014, https://doi.org/10.1038/s41413-019-0047-x
  47. Therapeutic Effects of Hyperbaric Oxygen in the Process of Wound Healing vol.25, pp.15, 2014, https://doi.org/10.2174/1381612825666190703162648
  48. Ozonated Oils and Cutaneous Wound Healing vol.25, pp.20, 2014, https://doi.org/10.2174/1381612825666190702100504
  49. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair vol.11, pp.37, 2014, https://doi.org/10.1021/acsami.9b08341
  50. HIF-transcribed p53 chaperones HIF-1α vol.47, pp.19, 2014, https://doi.org/10.1093/nar/gkz766
  51. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing vol.47, pp.1, 2014, https://doi.org/10.1007/s11033-019-05112-y
  52. Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord vol.7, pp.3, 2014, https://doi.org/10.1523/eneuro.0092-19.2019
  53. Distinct differences in hypoxic responses between human oral mucosa and skin fibroblasts in a 3D collagen matrix vol.56, pp.6, 2014, https://doi.org/10.1007/s11626-020-00458-1
  54. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia vol.9, pp.6, 2014, https://doi.org/10.3390/antiox9060516
  55. Radiation‐induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies vol.24, pp.14, 2014, https://doi.org/10.1111/jcmm.15479
  56. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis vol.51, pp.4, 2014, https://doi.org/10.1007/s10735-020-09887-4
  57. More bullets for PISTOL: linear and cyclic siloxane reporter probes for quantitative 1 H MR oximetry vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-57889-9
  58. HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism vol.3, pp.1, 2014, https://doi.org/10.1038/s42003-020-01495-y
  59. Hypoxia Reduces the Transcription of Fibrotic Markers in the Intestinal Mucosa vol.6, pp.2, 2014, https://doi.org/10.1159/000513061
  60. A Bioactive Living Hydrogel: Photosynthetic Bacteria Mediated Hypoxia Elimination and Bacteria‐Killing to Promote Infected Wound Healing vol.4, pp.1, 2014, https://doi.org/10.1002/adtp.202000107
  61. Hypoxia Promotes a Mixed Inflammatory-Fibrotic Macrophages Phenotype in Active Sarcoidosis vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.719009
  62. Impairment of the Hif‐1α regulatory pathway in Foxn1‐deficient (Foxn1 −/− ) mice affects the skin wound healing process vol.35, pp.2, 2014, https://doi.org/10.1096/fj.202001907r
  63. Exosomes Secreted from Amniotic Membrane Contribute to Its Anti-Fibrotic Activity vol.22, pp.4, 2014, https://doi.org/10.3390/ijms22042055
  64. The Expression and Role of Hypoxia-induced Factor-1α in Human Tenon’s Capsule Fibroblasts under Hypoxia vol.46, pp.3, 2014, https://doi.org/10.1080/02713683.2020.1805470
  65. The biological processes during wound healing vol.16, pp.4, 2014, https://doi.org/10.2217/rme-2020-0066
  66. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments vol.29, pp.4, 2014, https://doi.org/10.1111/wrr.12954
  67. FLI1 mediates the selective expression of hypoxia‐inducible factor 1 target genes in endothelial cells under hypoxic conditions vol.11, pp.8, 2014, https://doi.org/10.1002/2211-5463.13220
  68. Algae: A natural active material for biomedical applications vol.2, pp.4, 2014, https://doi.org/10.1002/viw.20200189
  69. HIF-Overexpression and Pro-Inflammatory Priming in Human Mesenchymal Stromal Cells Improves the Healing Properties of Extracellular Vesicles in Experimental Crohn’s Disease vol.22, pp.20, 2014, https://doi.org/10.3390/ijms222011269
  70. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing vol.12, pp.1, 2014, https://doi.org/10.1038/s41467-021-23448-7
  71. Calcineurin-nuclear factor for activated T cells (NFAT) signaling in pathophysiology of wound healing vol.41, pp.1, 2014, https://doi.org/10.1186/s41232-021-00176-5
  72. Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing vol.23, pp.1, 2014, https://doi.org/10.3390/ijms23010257
  73. Microalgae-based bioactive hydrogel loaded with quorum sensing inhibitor promotes infected wound healing vol.42, pp.None, 2022, https://doi.org/10.1016/j.nantod.2021.101368