• Title/Summary/Keyword: HF etching

Search Result 214, Processing Time 0.025 seconds

Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds (Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가)

  • Park, Jong-Myeong;Kim, Yeong-Rae;Kim, Sung-Dong;Kim, Jae-Won;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Three-dimensional integrated circuit(3D IC) technology has become increasingly important due to the demand for high system performance and functionality. In this work, BOE and HF wet etching of Cu line surfaces after CMP were conducted for Cu-Cu pattern direct bonding. Step height of Cu and $SiO_2$ as well as Cu dishing after Cu CMP were analyzed by the 3D-Profiler. Step height increased and Cu dishing decreased with increasing BOE and HF wet etching times. XPS analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE and HF wet etching treatment. BOE treatment showed not only the effective $SiO_2$ etching but also reduced dishing and Cu surface oxide rather than HF treatment, which can be used as an meaningful process data for reliable Cu-Cu pattern bonding characteristics.

Dry Etching Properties of HfAlO3 Thin Film with Addition O2 gas Using a High Density Plasma

  • Woo, Jong-Chang;Lee, Yong-Bong;Kim, Jeong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.164-169
    • /
    • 2014
  • We investigated the etching characteristics of $HfAlO_3$ thin films in $O_2/Cl_2/Ar$ and $O_2/BCl_3/Ar$ gas, using a high-density plasma (HDP) system. The etch rates of the $HfAlO_3$ thin film obtained were 30.1 nm/min and 36 nm/min in the $O_2/Cl_2/Ar$ (3:4:16 sccm) and $O_2/BCl_3/Ar$ (3:4:16 sccm) gas mixtures, respectively. At the same time, the etch rate was measured as a function of the etching parameter, namely as the process pressure. The chemical states on the surface of the etched $HfAlO_3$ thin films were investigated by X-ray photoelectron spectroscopy. Auger electron spectroscopy was used for elemental analysis on the surface of the etched $HfAlO_3$ thin films. These surface analyses confirm that the surface of the etched $HfAlO_3$ thin film is formed with nonvolatile by-product. Also, Cl-O can protect the sidewall due to additional $O_2$.

Etching Characteristics of HfAlO3 Thin Films Using an Cl2/BCl3/Ar Inductively Coupled Plasma

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.166-169
    • /
    • 2010
  • In this study, we changed the etch parameters (gas mixing ratio, radio frequency [RF] power, direct current [DC]-bias voltage, and process pressure) and then monitored the effect on the $HfAlO_3$ thin film etch rate and the selectivity with $SiO_2$. A maximum etch rate of 108.7 nm/min was obtained in $Cl_2$ (3 sccm)/$BCl_3$ (4 sccm)/Ar (16 sccm) plasma. The etch selectivity of $HfAlO_3$ to $SiO_2$ reached 1.11. As the RF power and the DC-bias voltage increased, the etch rate of the $HfAlO_3$ thin film increased. As the process pressure increased, the etch rate of the $HfAlO_3$ thin films increased. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. According to the results, the etching of $HfAlO_3$ thin film follows the ion-assisted chemical etching.

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

Removal of Photoresist Mask after the Cl2/HBr/CF4 Reactive Ion Silicon Etching (Cl2/HBr/CF4 반응성 이온 실리콘 식각 후 감광막 마스크 제거)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.353-357
    • /
    • 2010
  • Recently, silicon etching have received much attention for display industry, nano imprint technology, silicon photonics, and MEMS application. After the etching process, removing of etch mask and residue of sidewall is very important. The investigation of the etched mask removing was carried out by using the ashing, HF dipping and acid cleaning process. Experiment shows that oxygen component of reactive gas and photoresist react with silicon and converting them into the mask fence. It is very difficult to remove by using ashing or acid cleaning process because mask fence consisted of Si and O compounds. However, dilute HF dipping is very effective process for SiOx layer removing. Finally, we found optimized condition for etched mask removing.

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

The Fabrication of Micro-framework Using Photosensitive Glass-ceramics (감광성 결정화유리를 이용한 미세 구조물 제조에 대한 연구)

  • 김형준;이상훈;연석주;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • In lithium silicate photosensitive glass-ceramics, the relationship between lithography time and crystallization, and the effect of addition of mineral acid in etching rate and pattern shape were investigated. Irradiation times for micropatterning were less than 5 minutes in which Ce3+ ions in glass were changed rapidly to Ce4+ with ultra violet light. Overexposure to ultra brought about blot of pattern by diffiraction of light. Addition of mineral acid to HF enhanced etching rate as compared with HF solution only. The addition of H2SO4 especially increased the etching rate by 70%. But the mixed solution also increased the etching rate of the noncrystallized portion of the glass and this resulted in heavy etching. Etching with ultrasonic wave showed higher etching rate than that with the static or fluid method.

  • PDF

Optimization of Electrochemical Etching Parameters in Porous Silicon Layer Transfer Process for Thin Film Solar Cell (초박형 태양전지 제작에 Porous Silicon Layer Transfer기술 적용을 위한 전기화학적 실리콘 에칭 조건 최적화에 관한 연구)

  • Lee, Ju-Young;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • Fabrication of porous silicon(PS) double layer by electrochemical etching is the first step in process of ultrathin solar cell using PS layer transfer process. The porosity of the porous silicon layer can be controlled by regulating the formation parameters such as current density and HF concentration. PS layer is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. For electrochemical etching, highly boron doped (100) oriented monocrystalline Si substrates was used. Ths resistivity of silicon is $0.01-0.02\;{\Omega}{\cdot}cm$. The solution composition for electrochemical etching was HF (40%) : $C_2H_5OH$(99 %) : $H_2O$ = 1 : 1 : 2 (by volume). In order to fabricate porous silicon double layer, current density was switched. By switching current density from low to high level, a high-porosity layer was fabricated beneath a low-porosity layer. Etching time affects only the depth of porous silicon layer.

The Influence of Surface Treatments on Shear Bond Strength between Zirconia Core and Heat Press Ceramic Interface (지르코니아 코어의 표면처리방법이 열 가압 세라믹과의 전단결합강도에 미치는 영향)

  • Park, Hang-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • All-ceramic restorations have gained acceptance among clinicians and patients because of their superior esthetics. Most all-ceramic systems have a 2-layer structure, using a weak veneering ceramic over a strong supporting core. often, failure of all-ceramic restorations occurs when the veneering ceramic fractures, exposing the core material. The purpose of this study was to compare the shear bond strength of heat press ceramic system (Zirpress) to zirconia core with various surface treatments. 10 metal cores and 50 zirconia cores were fabricated and divided into six groups according to surface treatment such as Zirliner application, aluminium oxide blasting, and 9.5% HF etching. Sixty specimens were prepared using Zirpress, veneered 8mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 12.93 for $110{\mu}m$ aluminium oxide blasting/Rexillium III/IPS e.Max Zirpress; 14.92 for $50{\mu}m$ aluminium oxide blasting ${\pm}9.5%$ HF etching/Zirconis core/IPS e.Max Zirpress; 16.37 for $110{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 12.89 for $200{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 19.30 for 9.5% HF etching/Zirconis core/IPS e.Max Zirpress; 19.55 for Zirliner/Zirconis core/IPS e.Max Zirpress. The mean shear bond strength for ZNTZH (Zirliner/Zirconis core) and ZNTEH (9.5% HF etching/Zirconis core) were significantly superior to MS110H ($110{\mu}$ aluminium oxide blasting/Rexillium III) and ZS200EH ($200{\mu}$ aluminium oxide blasting + 9.5% HF etching/Zirconis core) (p<0.05).

  • PDF

Analysis and Reduction of Impurity Contamination Induced by Plasma Etching on Si Surface (플라즈마 식각에 의하여 실리콘 표면에 유기된 불순물 오염의 분석 및 제거)

  • Cho, Sun-Hee;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1078-1084
    • /
    • 2006
  • Impurity contamination induced by $CF_4\;and\;HBr/Cl_2/O_2$ plasma etching on Si surface was examined by using surface spectroscopes. XPS(x-ray photoelectron spectroscopy) surface analysis showed that F of 0.4 at % exists in the surface layer in the form of Si-F bonding but Br and Cl are below the detection limit $(0.1{\sim}1.0%)$ of the spectroscope. Static-SIMS(secondary ion mass spectrometry) surface analysis showed that the etched Si surface was contaminated with etching gas elements such as H, F, Cl and Br, and they existed to the depth of about $20{\sim}40nm$. The etched Si surface was treated with three different methods that were HF dip, thermal oxidation followed by HF dip and oxygen-plasma oxidation followed by HF dip. They showed an effect in reducing the impurity contamination and the oxygen-plasma oxidation followed by HF dipping method appears to be a little bit more effective.