• Title/Summary/Keyword: HF Etching

Search Result 215, Processing Time 0.035 seconds

Nano-gap Trench Etching using Forward Biased PN Junction for High Performance MEMS Devices (고성능 MEMS 소자를 위한 순방향 전극이 걸린 PN 접합을 이용한 나노 간격 홈의 식각)

  • Jeong, Jin-Woo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.833-836
    • /
    • 2005
  • Nano-gap trench is fabricated by the novel electrochemical etching technique using forward biased PN junction formed at the backside of the wafer. PN junction is formed using boron nitride wafer and the concentration of the boron doping is the high value of $1{\times}10^{19}$ $cm^{-3}$. The electro-chemical etching is performed in the 5% HF solution under the forward bias voltage of $1{\sim}2V$. The relationship between the etch rate of the trench and the voltage of the forward bias is investigated and the dependence of the gap for the voltage also examined. The etch rate increase from 0.027 ${\mu}m/min$ to 0.031 ${\mu}m/min$ as the value of the applied voltage increase from 1V to 2V, but the the gap is kept constant value of 40 nm.

  • PDF

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee Eun-Joo;Lee Soo-Hong
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

A study on Dry Etching for Lage Area Multi-Cystalline Silicon Solar Cell (대면적 다결정 실리콘 태양전지 제작을 위한 건식식각에 관한 연구)

  • Han, Kyu-Min;Su, Jin;Yoo, Kwon-Jong;Kwon, Jung-Young;Choi, Sung-Jin;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.243-243
    • /
    • 2010
  • This paper two different etching, HF : HNO3 :DI and RIE were used for etching in multi-crystalline Silicon(Mc-Si) solar cell fabrication. The wafers etched in RIE texture showed low reflectance compared to the wafers etched in Acid soultion after SiNx deposition. In light current-voltage results, the cells etched in RIE texture exhibited higher short circuit current and open circuit voltage than those of the cells etched in acid solution. We have obtained 15.1% conversion efficiency in large area($156cm^2$) Multi-Si solar cells etched in RIE texture.

  • PDF

Silicon Solar Cell Efficiency Improvement with surface Damage Removal Etching and Anti-reflection Coating Process (표면결함식각 및 반사방지막 열처리에 따른 태양전지의 효율 개선)

  • Cho, Chan Seob;Oh, Jeong Hwa;Lee, Byeungleul;Kim, Bong Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.29-35
    • /
    • 2014
  • In this study general solar cell production process was complemented, with research on improvement of solar cell efficiency through surface structure and thermal annealing process. Firstly, to form the pyramid structure, the saw damage removal (SDR) processed surface was undergone texturing process with reactive ion etching (RIE). Then, for the formation of smooth pyramid structure to facilitate uniform doping and electrode formation, the surface was etched with HND(HF : HNO3 : D.I. water=5 : 100 : 100) solution. Notably, due to uniform doping the leakage current decreased greatly. Also, for the enhancement and maintenance of minority carrier lifetime, antireflection coating thermal annealing was done. To maintain this increased lifetime, front electrode was formed through Au plating process without high temperature firing process. Through these changes in two processes, the leakage current effect could be decreased and furthermore, the conversion efficiency could be increased. Therefore, compared to the general solar cell with a conversion efficiency of 15.89%, production of high efficiency solar cell with a conversion efficiency of 17.24% was made possible.

Fabrication of Si Inverted Pyramid Structures by Cu-Assisted Chemical Etching for Solar Cell Application (결정질 실리콘 태양전지의 효율개선을 위한 실리콘 역 피라미드 구조체 최적화)

  • Park, Jin Hyeong;Nam, Yoon-Ho;Yoo, Bongyoung;Lee, Jung-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.315-321
    • /
    • 2017
  • Antireflective pyramid arrays can be readily obtained via anisotropic etching in alkaline solution (KOH, NaOH), which is widely used in crystalline-Si (c-Si) solar cells. The periodic inverted pyramid arrays show even lower light reflectivity because of their superior light-trapping characteristics. Since this inverted pyramidal structures are mostly achieved using very complex techniques such as photolithograpy and laser processes requiring extra costs, here, we demonstrate the Cu-nanoparticle assisted chemical etching processes to make the inverted pyramidal arrays without the need of photolithography. We have mainly controlled the concentration of $Cu(NO_3)_2$, HF, $H_2O_2$ and temperature as well as time factors that affecting the reaction. Optimal inverted pyramid structure was obtained through reaction parameters control. The reflectance of inverted pyramid arrays showed < 10% over 400 to 1100 nm wavelength range while showing 15~20% in random pyramid arrays.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Study of etching properties of the $HfAlO_3$ thin film using the inductively coupled plasma (유도결합 플라즈마를 이용한 $HfAlO_3$ 박막의 식각특성 연구)

  • Ha, Tae-Kyung;Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seung;Yang, Xue;Joo, Young-Hee;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.73-73
    • /
    • 2009
  • 트렌지스터의 채널 길이가 줄어듦에 따라 절연층으로 쓰이는 $SiO_2$의 두께는 얇아져야 한다. 이에 따라 얇아진 절연층에서 터널링이 발생하여 누설전류가 증가하게 되어 소자의 오동작을 유발한다. 절연층에서의 터널링을 줄여주기 위해서는 High-K와 같은 유전율이 높은 물질을 이용하여 절연층의 두께를 높여주어야 한다. 최근에 각광 받고 있는 High-K의 대표적인 물질은 $HfO_2$, $ZrO_2$$Al_2O_3$등이 있다. $HfO_2$, $ZrO_2$$Al_2O_3$$SiO_2$보다 유전상 수는 높지만 밴드갭 에너지, 열역학적 안정성, 재결정 온도와 같은 특성 면에서 $SiO_2$를 완전히 대체하기는 어려운 실정이다. 최근 연구에 따르면 기존의 High-K물질에 금속을 첨가한 금속산화물의 경우 밴드갭 에너지, 열역학적 안정성, 재결정 온도의 특성이 향상되었다는 결과가 있다. 이 금속 산화물 중 $HfAlO_3$가 대표적이다. $HfAlO_3$는 유전상수 18.2, 밴드캡 에너지 6.5 eV, 재결정 온도 $900\;^{\circ}C$이고 열역학적 안전성이 개선되었다. 게이트 절연층으로 사용될 수 있는 $HfAlO_3$는 전극과 기판사이에 적층구조를 이루고 있어, 이방성 식각인 건식 식각에 대한 연구가 필요하다. 본 연구는 $BCl_3$/Ar 유도결합 플라즈마를 이용하여 $HfAlO_3$ 박막의 식각 특성을 알아보았다. RF Power 700 W, DC-bias -150 V, 공정압력 15 mTorr, 기판온도 $40\;^{\circ}C$를 기본 조건으로 하여, $BCl_3$/Ar 가스비율, RF Power, DC-bias 전압, 공정압력에 의한 식각율 조건과 마스크물질과의 선택비를 알아보았다. 플라즈마 분석은 Optical 이용하여 진행하였고, 식각 후 표면의 화학적 구조는 X-ray Photoelectron Spectroscoopy(XPS) 분석을 통하여 알아보았다.

  • PDF

INVESTIGATION OF DOMAIN STRUCTURES IN $LiNbO_3$ SINGLE CRYSTALS GROWN BY CZOCHRALSKI METHOD

  • Do, Won-Joong;Kyung Joo;Shin, Kwang-Bo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.111-114
    • /
    • 1998
  • Lithium Niobate {{{{ { LiNbO}_{ 3} }}}} single crystals grown by Czichralski method at the congruent composition, have ferroelectric microdomains. These microdomins were investigated by chemical etching with hydrofluoric acid (HF) AND NITRIC ACID ({{{{ { HNO}_{3 } }}}}), and by us ing optical microscopy, scanning electron microscopy and atomic force microscopy

  • PDF

GaN Epitaxy with PA-MBE on HF Cleaned Cobalt-silicide Buffer Layer (HF 크리닝 처리한 코발트실리사이드 버퍼층 위에 PA-MBE로 성장시킨 GaN의 에피택시)

  • Ha, Jun-Seok;Chang, Ji-Ho;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.409-413
    • /
    • 2010
  • We fabricated 10 nm-thick cobalt silicide($CoSi_2$) as a buffer layer on a p-type Si(100) substrate to investigate the possibility of GaN epitaxial growth on $CoSi_2/Si(100)$ substrates. We deposited 500 nm-GaN on the cobalt silicide buffer layer at low temperature with a PA-MBE (plasma assisted-molecular beam epitaxy) after the $CoSi_2/Si$ substrates were cleaned by HF solution. An optical microscopy, AFM, TEM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. For the GaN samples without HF cleaning, they showed no GaN epitaxial growth. For the GaN samples with HF cleaning, they showed $4\;{\mu}m$-thick GaN epitaxial growth due to surface etching of the silicide layers. Through XRD $\omega$-scan of GaN <0002> direction, we confirmed the cyrstallinity of GaN epitaxy is $2.7^{\circ}$ which is comparable with that of sapphire substrate. Our result implied that $CoSi_2/Si(100)$ substrate would be a good buffer and substrate for GaN epitaxial growth.