• Title/Summary/Keyword: HEK293 cells

Search Result 246, Processing Time 0.022 seconds

Peroxidase Activity of Peroxidasin Affects Endothelial Cell Growth (내피 세포 성장에 영향을 미치는 PXDN의 peroxidase 활성)

  • Kyung A Ham;Seong Bin Jo;Min Ju Lee;Young Ae Joe
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • Peroxidasin (PXDN), a multidomain heme peroxidase containing extracellular matrix (ECM) motifs, as well as a catalytic domain, catalyzes the sulfilimine crosslink of collagen IV (Col IV) to reinforce Col IV scaffolds. We previously reported that PXDN is required for endothelial cell (EC) survival and growth signaling through sulfilimine crosslink-dependent matrix assembly. In this study, we examined whether peroxidase activity is required for PXDN function in ECs. First, we constructed a mutant PXDN by point mutation of two highly conserved amino acids, Q823 and D826, which are present in the active site of the peroxidase domain. After isolation of HEK293 clones highly expressing the mutant protein, conditioned medium (CM) was obtained after incubating the cells in serum-free medium for 24 hours and then analyzed by Western blot analysis under nonreducing conditions. The results revealed that the mutant PXDN formed a trimer and that it was cleaved by proprotein convertase-like wild-type (WT) PXDN. However, peroxidase activity was not detected in the CM containing the mutant PXDN, in contrast to that of WT PXDN. In addition, the sulfilimine crosslink ability of the mutant PXDN was lost. Moreover, the CM containing the mutant PXDN failed to promote the growth of PXDN-depleted ECs, unlike the CM containing WT PXDN. These results suggest that the peroxidase activity of PXDN affects EC growth by forming a sulfilimine crosslink.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Measurement of Antibodies to Varicella-Zoster Virus Using a Virus-Free Fluorescent-Antibody-to-Membrane-Antigen (FAMA) Test

  • Park, Rackhyun;Hwang, Ji Young;Lee, Kang Il;Namkoong, Sim;Choi, Seuk-Keun;Park, Songyong;Park, Hosun;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.268-273
    • /
    • 2015
  • The fluorescent-antibody-to-membrane-antigen (FAMA) test is regarded as the "gold standard" to detect protective antibodies to varicella-zoster virus (VZV) because of its high sensitivity and specificity. Because the classic FAMA test uses an infectious virus for detection of antibodies to VZV, it is labor-intensive, and also requires special equipment for handling the virus. For this reason, we attempted to develop a simple and safe FAMA assay. Because VZV glycoprotein E (gE) is one of the major VZV glycoproteins, we used the gE protein for the FAMA test (gE FAMA). Here, we demonstrate that overexpression of gE in HEK293T cells can be used to measure antibodies in human serum, and that gE FAMA titers are closely correlated with gpEIA ELISA data. These results indicate that our gE FAMA test has the potential to measure antibodies to VZV.

Regulation of Estrogen Receptor Under Hypoxia in Breast Cancer Cells

  • Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.55-74
    • /
    • 2008
  • Previously, we have shown that hypoxia, through HIF-1, induces ligand-independent $ER{\alpha}$ activation and the physical interaction of HIF-1 and $ER{\alpha}$. However, the effect of hypoxia on the transactivation of $ER{\beta}$ is not yet known. In the present study, we found that hypoxia activated the $ER{\beta}$-mediated transcriptional response in the HEK 293 cell line, as determined by the transient expression of$ER{\beta}$ and ER-responsive reporter plasmids. The hypoxia-induced estrogen response element-mediated transcriptional response was dependent on $ER{\beta}$ expression and was inhibited by the ER antagonist ICI 182,780. Transactivation of $ER{\beta}$ was induced by the expression of HIF-$1{\alpha}$ under normoxic conditions, as determined by the expression of oxygen-independent stable GFP-HIF-$1{\alpha}$. HIF-$1{\alpha}$-induced $ER{\beta}$ transactivation was abolished by the inhibition of HIF-$1{\alpha}$ activation. This was determined by using chemical inhibitors for the MAPK pathway. In addition, HIF-$1{\alpha}$ interacted with $ER{\beta}$ in a mammalian-two hybrid assay. We conclude that hypoxia activates $ER{\beta}$ in a ligand-independent manner, possibly through the interaction of HIF-$1{\alpha}$ and $ER{\beta}$.

  • PDF

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

Effect of Tea Polyphenols on Conversion of Nicotine to Cotinine

  • Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.11 no.4
    • /
    • pp.238-244
    • /
    • 2003
  • Nicotine is one of the major hazardous components in cigarettc smoke. Nicotine deals a harmful effect to smokers and passive smokers due to its rapid conversion to various carcinogenic metabolites. Nitrosamine-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is believed to cause lung cancers among the nicotine-derived carcinogens. Recent studies report that NNK synthesis can be inhibited by the metabolism pathway to produce a stable metabolite cotinine from nicotine. Tea polyphenols have been known to contain factors to prevent cancers and to retard progression of cancers. This study aims to correlate tea polyphenol's potential for cancer prevention with an accelerated formation of cotinine. The conversion from nicotine to cotinine in the presence of tea extracts or three polyphenols (Catechin, epicatechin gallate, epigallocatechin gallate) was measured in established cell lines and in Xenopus oocytes. Among three lines of cell used, PLC/PRF5 and HEK293 cells showed a fast turnover from nicotine to cotinine while HepG2 cell line showed a marginal difference between groups treated and non-treated with tea polyphenols. When Xenopus oocytes were microinjected with nicotine, tea polyphenols appear to accelerate the conversion of nicotine to cotinine. Among the polyphenols tested in this study, (+)-catechin showed the best efficiency overall in accelerating conversion from nicotine to cotinine both in the cell lines and in the oocytes. In summary, the present study indicated that tea polyphenols have a positive effect on conversion of nicotine to cotinine.

Investigation of the effect of SRSF9 overexpression on HIV-1 production

  • Ga-Na, Kim;Kyung-Lee, Yu;Hae-In, Kim;Ji Chang, You
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.639-644
    • /
    • 2022
  • Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Comparison of Immune modulatary and Anticancer Activities according to the Parts of the Styrax japonica Sieb. et Zucc. (때죽나무의 부위별 면역 및 항암활성 비교)

  • Kwon, Oh-Woung;Kim, Cheol-Hee;Kim, Hyo-Sung;Kwon, Min-Chul;Ahn, Ju-Hee;Lee, Hak-Ju;Kang, Ha-Young;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2007
  • This study was performed to anticancer activities and immune modulatary activities according to the parts of the S. japonica Sieb. et Zucc. The cytotoxicity on human kidney cell (HEK 293) was showed below 27.4% in adding the methanol extracts. The anticancer activity were increased in over 60% by barks extracts in AGS and MCF-7 cells. The immune cell growth using human immune B and T cells was improved by the barks extracts of S. japonica Sieb. et Zucc. in adding 1.0mg/ml concentration. The secretion of the IL-6 and TNF-${\alpha}$ from human immune B and T cells was showed secretion for the amount of cytokines by bark extracts of S. japonica Sieb. et Zucc. NK cell growth was increased against control all of the extracts of S. japonica Sieb. et Zucc. Densitometric analysis of Bcl-2 revealed that possible to decrease potentialities of taking cancer in adding of extracts from S. japonica Sieb. et Zucc. From the results, the roots and barks extracts of S. japonica Sieb. et Zucc. were showed useful biological activities.

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.