• Title/Summary/Keyword: HDFS distributed storage

Search Result 18, Processing Time 0.036 seconds

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

Implementation on Online Storage with Hadoop (하둡을 이용한 온라인 대용량 저장소 구현)

  • Eom, Se-Jin;Lim, Seung-Ho
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • 최근 페이스북이나 트위터와 같은 소셜네트워크 서비스를 포함하여 대용량의 빅데이터에 대한 처리와 분석이 중요한 이슈로 다뤄지고 있으며, 사용자들이 끊임없이 쏟아내는 데이터로 인해서 이러한 데이터들을 어떻게 다룰 것인지, 혹은 어떻게 분석하여 의미 있고, 가치 있는 것으로 가공할 것인지가 중요한 사안으로 여겨지고 있다. 이러한 빅데이터 관리 도구로써 하둡은 빅데이터의 처리와 분석에 있어서 가장 해결에 근접한 도구로 평가받고 있다. 이 논문은 하둡의 주요 구성요소인 HDFS(Hadoop Distributed File System)와 JAVA에 기반하여 제작되는 온라인 대용량 저장소 시스템의 가장 기본적인 요소인 온라인 데이터 저장소를 직접 설계하고 제작하고, 구현하여 봄으로써 대용량 저장소의 구현 방식에 대한 이슈를 다뤄보도록 한다.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

  • Srinivasan, Kathiravan;Chang, Chuan-Yu;Huang, Chao-Hsi;Chang, Min-Hao;Sharma, Anant;Ankur, Avinash
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.989-1009
    • /
    • 2018
  • Rapid advances in science and technology with exponential development of smart mobile devices, workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years. The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the generation of an enormous amount of data, now termed 'big data'. Given this scenario, storage of data on local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At present, there are several cloud computing service providers available to resolve the big data issues. This paper establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the regular data centers require large amounts of energy for operation, they also need cooling equipment and occupy prime real estate. However, this energy consumption scenario and the physical space constraints can be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power, high-speed solution along with micro-data center support for big data. Hadoop provides the required modules for the distributed processing of big data by deploying map-reduce programming approaches. In this work, the performance of SBC clusters and a single computer were compared. It can be observed from the experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%. Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS), which offers more flexibility and greater scalability than a single computer system.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

CERES: A Log-based, Interactive Web Analytics System for Backbone Networks (CERES: 백본망 로그 기반 대화형 웹 분석 시스템)

  • Suh, Ilhyun;Chung, Yon Dohn
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.651-657
    • /
    • 2015
  • The amount of web traffic has increased as a result of the rapid growth of the use of web-based applications. In order to obtain valuable information from web logs, we need to develop systems that can support interactive, flexible, and efficient ways to analyze and handle large amounts of data. In this paper, we present CERES, a log-based, interactive web analytics system for backbone networks. Since CERES focuses on analyzing web log records generated from backbone networks, it is possible to perform a web analysis from the perspective of a network. CERES is designed for deployment in a server cluster using the Hadoop Distributed File System (HDFS) as the underlying storage. We transform and store web log records from backbone networks into relations and then allow users to use a SQL-like language to analyze web log records in a flexible and interactive manner. In particular, we use the data cube technique to enable the efficient statistical analysis of web log. The system provides users a web-based, multi-modal user interface.

An Efficient Data Transmission to Cloud Storage using USB Hijacking (USB 하이재킹을 이용한 클라우드 스토리지로의 효율적인 데이터 전송 기법)

  • Eom, Hyun-Chul;No, Jae-Chun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.47-55
    • /
    • 2011
  • The performance of data transmission from mobile devices to cloud storages is limited by the amount of data being transferred, communication speed and battery consumption of mobile devices. Especially, when the large-scale data communication takes place using mobile devices, such as smart phones, the performance turbulence and power consumption become an obstacle to establish the reliable communication environment. In this paper, we present an efficient data transmission method using USB Hijacking. In our approach, the synchronization to transfer a large amount of data between mobile devices and user PC is executed by using USB Hijacking. Also, there is no need to concern about data capacity and battery consumption in the data communication. We presented several experimental results to verify the effectiveness and suitability of our approach.

Design and Implementation of Big Data Platform for Image Processing in Agriculture (농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현)

  • Nguyen, Van-Quyet;Nguyen, Sinh Ngoc;Vu, Duc Tiep;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.