An Efficient Data Transmission to Cloud Storage using USB Hijacking

USB 하이재킹을 이용한 클라우드 스토리지로의 효율적인 데이터 전송 기법

  • Eom, Hyun-Chul (Department of Computer Engineering, Sejong University) ;
  • No, Jae-Chun (Department of Computer Engineering, Sejong University)
  • 엄현철 (세종대학교 컴퓨터공학과) ;
  • 노재춘 (세종대학교 컴퓨터공학과)
  • Received : 2011.10.10
  • Published : 2011.11.25

Abstract

The performance of data transmission from mobile devices to cloud storages is limited by the amount of data being transferred, communication speed and battery consumption of mobile devices. Especially, when the large-scale data communication takes place using mobile devices, such as smart phones, the performance turbulence and power consumption become an obstacle to establish the reliable communication environment. In this paper, we present an efficient data transmission method using USB Hijacking. In our approach, the synchronization to transfer a large amount of data between mobile devices and user PC is executed by using USB Hijacking. Also, there is no need to concern about data capacity and battery consumption in the data communication. We presented several experimental results to verify the effectiveness and suitability of our approach.

클라우드 스토리지로 데이터를 전송하는 경우, 데이터의 전송용량 및 속도와 모바일 기기의 배터리 사용량 과다로 인해 많은 제약이 따르게 된다. 특히 스마트폰과 같은 모바일 기기들이 대용량 데이터를 전송할 때, 일정하지 않은 데이터 전송 속도와 배터리 사용량은 신뢰성 있는 고속 통신 환경을 구축하는데 큰 장애가 되고 있다. 본 연구는 하둡(Hadoop) 기반의 클라우드 스토리지로 효율적인 데이터 전송을 실행하기 위한 기법을 제안한다. 본 연구에서 제안하는 기법은 USB Hijacking을 이용하여 모바일 기기와 사용자 PC를 동기화 시키도록 하였으며, 이를 통해 데이터 통신 시 용량이나 배터리의 제한 없이 대용량 데이터 전송이 이루어지도록 구현하였다.

Keywords

References

  1. J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin, "Improving MapReduce Performance via Data Placement in Heterogeneous Hadoop Clusters," in Proc. of 24th IEEE International Parallel & Distributed Processing Symposium, Atlanta, USA, April 2010.
  2. R. Geambasu, S. D. Gribble and H. M. Levy, "CloudViews: Communal Data Sharing in Public Clouds," in Proc. of HotCloud 2009, San Diego, USA, June 2009.
  3. J. Dean and S. Ghemawat. "Mapreduce: Simplified data processing on large clusters," in Proc. of 6th Symposium on Operating Systems Design & Implementation, San Francisco, USA, December 2004.
  4. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2, 2007.
  5. IBM Blue Cloud Project, http://www04.ibm.com/jct03001c/press/us/en/press release/22613, 2009.
  6. Google App Engine, http://code.google.com/appengine, 2009.
  7. E. Marinelli, "Hyrax: Cloud Computing on Mobile Devices Using MapReduce," School of Computer Science, Canegie Mellon University, Pitsburgh, USA, September 2009.
  8. HDFS (hadoop distributed file system) http://hadoop.apache.org/common/docs/current/hdf s_design.html, 2009.
  9. C. Ranger , R. Raghuraman, A. Penmetsa, G. Bradski and C. Kozyrakis, "Evaluating MapReduce for Multi-core and Multiprocessor Systems," in Proc. of 13th International Symposium on High-Performance Computer Architecture, Feb. 2007.
  10. B. He, W. Fang, Q. Luo, N.K. Govindaraju, and T. Wang, "Mars: A Mapreduce Framework on Graphics Processors," in Proc. of 17th Int'l Conf. Parallel Architectures and Compilation Techniques (PACT), Toronto, Canada, Oct. 2008.
  11. Hadoop, http://hadoop.apache.org/core