• Title/Summary/Keyword: H2SO4+

Search Result 4,753, Processing Time 0.038 seconds

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

Cesium Removal from Soil Contaminated with Radioactivity Using Electrokinetic Method (동전기적방법을 이용한 방사능오염토양 내의 세슘 제거)

  • 김계남;원휘준;김민길;박진호;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.696-700
    • /
    • 2003
  • $H_2SO_4$ and citric acid had higher extraction efficiency of $^{137}Cs$ from soil than the other chemicals. Thus, $H_2SO_4$and citric acid were used as additives on remediation experiment by electrokinetic method to increase removal efficiency of $^{137}Cs$ from the radioactive soil being stored during a long time. An average velocity of effluent discharged from experimental column $2.0{\times}10^{-2}$/cm/min and a volume of the discharged soil wastewater for 10 days is 3.6 Pore Volume. The 54% of a total of $^{137}Cs$ in the column was decontaminated for 10 days. Furthermore, the predicted values of residual concentration by the developed model were quite similar to those obtained from experiments.

  • PDF

Production of Lactic Acid from 1,2-Propanediol by Yeast (1,2-Propanediol로부터 Lactic acid의 생성)

  • Chae, Ki-Soo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 1981
  • 1,2-propanediol-utilizing yeast, Y-1-4, was isolated from sludge sample by the enrichment culture technique. The product produced from 1,2-propanediol by the selected strain was identified as lactic acid by paper chromatography and infrared absorption spectrum. The strain assimilated ethanol, 1,2-propanediol, glycerine and glucose, but it produced lactic acid from 1,2-propanediol used as the sole carbon source. Under optimal conditions, the strain Y-1-4 was cultured with shaking at 3$0^{\circ}C$ for 4days in the medium containing 1,2-propanediol 20.0g, NH$_4$Cl 5.0g, KH$_2$PO$_4$ 1.0g, MgSO$_4$.7$H_2O$ 0.5g, FeSO$_4$.7$H_2O$ 0.25g, yeast extract 0.4g, CaCO$_3$ 3. 0g and tap water to one liter, and then the yield of lactic acid was about 12. 1g per liter of the culture broth.

  • PDF

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye;Kim, Jin Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

Hydrated Ferric Sulfate [Fe2(SO4)3·xH2O]: An Efficient and Reusable Catalyst for One-Pot Synthesis of 2H-Indazolo[2,1-b]phthalazine-triones

  • Choudhury, Abhik;Ali, Shahzad;Khan, Abu T.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.280-283
    • /
    • 2015
  • Hydrated ferric sulfate can be used as an efficient and reusable catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives via one-pot three-component condensation reaction of phthalhydrazide, aromatic aldehydes and cyclic-1,3-diketones in ethanol under reflux conditions.

Taxonomic Study of the Genus Lespedeza by Means for Colour Reactions (정색반응(呈色反應)에 의(依)한 싸리속(屬)의 분류학적(分類學的) 연구(硏究))

  • Park, Chong Yawl;Lee, Tchang Bok
    • Journal of Korean Society of Forest Science
    • /
    • v.14 no.1
    • /
    • pp.21-31
    • /
    • 1972
  • It has intended to identify the members of the Genus Lespedeza in Korea by a chemical colour reaction, and the following five species of the Genus Lespedeza grown in the garden have been used in this experiment. 1. Lespedeza bicolor Turcz 2. Lespedeza bicolor var. melanantha (Nak.) T. Lee 3. Lespedeza cyrtobotrya Miq. 4. Lespedeza japonica var. intermedia Nakai 5. Lespedeza maritima Nakai 6. Lespedeza maximowiczii Schneider 7. Lespedeza maximowiczii var. tomentella Nakai A few drops of each solution of $K_2Cr_2O_7$. $FeSO_4{\cdot}7H_2O$, $FeCl_3$, $KH_2PO_4$, $KMnO_4$, $NH_4OH$, and HCl was added to the methanol extracts of wood dust to get the specific colour reaction. HCl-infused wood was also used for the identification of L. bicolor var. melanantha and L. bicolor. The results can be summarized as the following key; 1. Chrome lemon by $K_2Cr_2O_7$ ${\cdots}{\cdots}$2 1. Sun flower yellow by $K_2Cr_2O_7$ ${\cdots}{\cdots}$Lespedeza maximowiczii var. tomentella Nakai 2. $KH_2PO_4$ Oystem white by $KH_2PO_4$; golden yellow by $FeCl_3$ ${\cdots}{\cdots}$=3 2. Cream colour by $KH_2PO_4$=6 3. Oyster white by $NH_4OH$; corn colour by $FeSO_4{\cdot}7H_2O$ ${\cdots}{\cdots}$4 3. Cream colcur by $NH_4OH$ ${\cdots}{\cdots}$5 4. Van dyke brown by $KMnO_4$ ${\cdots}{\cdots}$; sea shell pink by HCl injection under heating ${\cdots}{\cdots}$Lespedeza japonica var. intermedia Nakai 4. Sepia colour by $KMnO_4$; honey colour by HCl injection under heating ${\cdots}{\cdots}$Lespedeza maritima Nakai 5. Golden red by $FeSO_4{\cdot}7H_2O$; andover green by HCl-infused wood dust ${\cdots}{\cdots}$Lespedeza bicolor var. melanantha (Nak.) T. Lee 5. Yellow ochre by $FeSO_4{\cdot}7H_2O$; sand warm gray by HCl-infused wood dust ${\cdots}{\cdots}$Lespedeza bicolor Turcz 6. Amber green by $FeCl_3$ ${\cdots}{\cdots}$Lespedeza cyrtobotrya Miq. 6. Leather brown by $FeCl_3$ ${\cdots}{\cdots}$Lespedeza maximowiczii Schneider.

  • PDF

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Seasonal color change of the oxyhydrous precipitates in the Taebaek coal mine drainage, south Korea, and implications for mineralogical and geochemical controls

  • Kim, J. J.;C. O. Choo;Kim, S. J.;K. Tazaki
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.38-39
    • /
    • 2001
  • The seasonal changes in pH, Fe, Al and SO$_4$$\^$2-/ contents of acid drainage released from coal mine dumps play a major role in precipitation of metal hydroxides in the Taebaek coal field area, southeastern Korea. Precipitates in the creeks underwent a cycle of the color change showing white, reddish brown and brownish yellow, which depends on geochemical factors of the creek waters. White precipitates consist of Al-sulfate (basaluminite and hydrobasaluminite) and reddish brown ones are composed of ferrihydrite and brownish yellow ones are of schwertmannite. Goethite coprecipitates with ferrihydrite and schwertmannite. Ferrihydrite formed at higher values than pH 5.3 and schwertmannite precipitated below pH 4.3, and goethite formed at the intermediate pH range between the two minerals. With the pH being increased from acid to intermediate regions, Fe is present both as schwertmannite and goethite. From the present observation, the most favorable pH that basauluminte can precipitate is in the range of pH 4.45-5.95. SEM examination of precipitates at stream bottom shows that they basically consist of agglomerates of spheroid and rod-shape bacteria. Bacteria species are remarkably different among bottom precipitates and, to a less extent, there are slightly different chemical compositions even within the same bacteria. The speciation and calculation of the mineral saturation index were made using MINTEQA2. In waters associated with yellowish brown precipitates mainly composed of schwertmannite, So$_4$ species is mostly free So$_4$$\^$2-/ ion with less AlSo$_4$$\^$+/, CaSo$\sub$(aq)/, and MgSo$\sub$4(aq)/. Ferrous iron is present mostly as free Fe$\^$2+/, and FeSo$\sub$4(aq)/ and ferric iron exists predominantly as Fe(OH)$_2$$\^$+/, with less FeSo$\sub$4(aq)/, Fe(OH)$_2$$\^$-/, FeSo$_4$$\^$-/ and Fe$\^$3+/, respectively Al exists as free Al$\^$3+/, AlOH$_2$$\^$-/, (AlSo$_4$)$\^$+/, and Al(So$_4$)$\^$2-/. Fe is generally saturated with respect to hematite, magnetite, and goethite, with nearly saturation with lepidocrocite. Aluminum and sulfate are supersaturated with respect to predominant alunite and less jubanite, and they approach a saturation state with respect to diaspore, gibbsite, boehmite and gypsum. In the case of waters associated with whitish precipitates mainly composed of basaluminite, Al is present as predominant Al$\^$3+/ and Al(SO$_4$)$\^$+/, with less Al(OH)$\^$2+/, Al(OH)$_2$$\^$+/ and Al(SO$_4$)$\^$2-/. According to calculation for the mineral saturation, aluminum and sulfate are greatly supersaturated with respect to basaluminite and alunite. Diaspore is flirty well supersaturated while jubanite, gibbsite, and boehmite are already supersaturated, and gypsum approaches its saturation state. The observation that the only mineral phase we can easily detect in the whitish precipitate is basaluminite suggests that growth rate of alunite is much slower than that of basaluminite. Neutralization of acid mine drainage due to the dilution caused by the dilution effect due to mixing of unpolluted waters prevails over the buffering effect by the dissolution of carbonate or aluminosilicates. The main factors to affect color change are variations in aqueous geochemistry, which are controlled by dilution effect due to rainfall, water mixng from adjacent creeks, and the extent to which water-rock interaction takes place with seasons. pH, Fe, Al and SO$_4$ contents of the creek water are the most important factors leading to color changes in the precipitates. A geochemical cycle showing color variations in the precipitates provides the potential control on acid mine drainage and can be applied as a reclamation tool in a temperate region with four seasons.

  • PDF

Ionic Equilibria and Ion Exchange of Molybdenum(VI) from Strong Acid Solution

  • Lee, Man-Seung;Sohn, Seong-Ho;Lee, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3687-3691
    • /
    • 2011
  • Ion exchange experiments of molybdenum(VI) from strong HCl and $H_2SO_4$ solution have been done to investigate the existence of anionic complexes. The concentration of HCl and $H_2SO_4$was changed from 1 to 9 M. From the data on the complex formation of molybdenum in aqueous solution, a new distribution diagram of Mo(VI) was constructed in the pH range from zero to 10. AG 1 X-8, an anion exchange resin, and Diphonix, a cation exchange resin were used in the loading experiments. Ion exchange results indicate that anionic complexes of Mo(VI) begins to form from 3 M HCl and 1 M $H_2SO_4$ solution and the tendency to form anionic complexes is stronger in HCl than in $H_2SO_4$ solution. Our results can be utilized in the analysis of Mo(VI) in strong acid solution and in the design of a process to separate Mo(VI).

Optimization of Growth Medium and Poly-$\beta$-hydroxybutyric Acid Production from Methanol in Methylobacterium organophilum (메탄올로부터 Methylobacterium organophilum에 의한 Poly-$\beta$-hydroxybutyric Acid의 생산과 배지성분의 최적화)

  • Choi, Joon-H;Kim, Jung H.;M. Daniel;J.M. Lebeault
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.392-396
    • /
    • 1989
  • Methylobacterium organophilum, a facultative methylotroph was cultivated on a methanol as a sole carbon and energy source. The cell growth was affected by the various components of minimal synthetic medium and the medium composition was optimized with 0.5% (v/v) methanol at pH 6.8 and at 3$0^{\circ}C$. The maximum specific growth rate of M. organophilum was achieved to 0.26 hr$^{-1}$ in the optimized medium which has following composition: Methanol, 0.5% (v/v):(NH$_4$)$_2$SO$_4$, 1.0g/l:KH$_2$PO$_4$, 2.13g/l:KH$_2$PO$_4$, 1.305g/ι:MgSO$_4$.7$H_2O$. 45g/l and trace elements (CaCl$_2$.2$H_2O$, 3.3mg:FeSO$_4$.7$H_2O$, 1.3mg:MnSO$_4$.4$H_2O$, 130$\mu\textrm{g}$:ZnSO$_4$.5$H_2O$, 40$\mu\textrm{g}$:Na$_2$MoO$_4$.2$H_2O$, 40$\mu\textrm{g}$:CoCl$_2$.6$H_2O$, 40$\mu\textrm{g}$:H$_3$BO$_3$, 30$\mu\textrm{g}$ per liter). By the limitation of nitrogen and deficiency of Mn$^{+2}$ or Fe$^{+2}$, the cell growth was significantly repressed. Methanol greatly repressed the cell growth and the complete inhibition was observed at concentration above 4% (v/v). In order to overcome the methanol inhibition and to prevent the methanol limitation, intermittent feeding of methanol was conducted by a D.O.-stat technique. PHB production by M. organophilum was stimulated by deficiency of nutrients such as NH$_{4}^{+}$, SO$_{4}^{-2}$, $Mg^{+2}$, $K^{+}$, or PO$_{4}^{-3}$ in the medium. The maximum PHB content was obtained as 58% of dry cell weight under deficiency of potassium ion in the optimized synthetic medium.

  • PDF