DOI QR코드

DOI QR Code

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Jin Young (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2018.05.18
  • Accepted : 2018.06.20
  • Published : 2018.09.30

Abstract

This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

Keywords

References

  1. M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4302. https://doi.org/10.1021/cr020731c
  2. J.B. Goodenough and K.S. Park, J. Am. Chem. Soc., 2013, 135(4) 1167-1176. https://doi.org/10.1021/ja3091438
  3. M.H. Pyun and Y.J. Park, J. Alloy. Compd., 2015, 643, S90-S94. https://doi.org/10.1016/j.jallcom.2014.11.237
  4. B. Scrosati and J. Garche, J. Power Sources, 2010, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  5. H.J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233. https://doi.org/10.1016/j.jpowsour.2013.01.154
  6. H.D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim, H. Gwon, Y. Ko, M. Lee, K. Cho and K. Kang, Nat. Energy, 2016, 1(6), 16066. https://doi.org/10.1038/nenergy.2016.66
  7. J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee and J. Cho, Adv. Energy Mater., 2011, 1(1), 34-50. https://doi.org/10.1002/aenm.201000010
  8. W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park and I.D. Kim, Nano Lett., 2013, 13(9), 4190-4197. https://doi.org/10.1021/nl401868q
  9. T.H. Yoon and Y.J. Park, J. Power Sources, 2013, 244, 344-353. https://doi.org/10.1016/j.jpowsour.2013.01.023
  10. B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib and L.F. Nazar, Energy Environ. Sci., 2013, 6(6), 1772-1778. https://doi.org/10.1039/c3ee40697k
  11. A.C. Luntz and B.D. McCloskey, Chem. Rev., 2014, 114(23), 11721-11750. https://doi.org/10.1021/cr500054y
  12. A. Kraytsberg and Y. Ein-Eli, J. Power Sources, 2011, 196(3), 886-893. https://doi.org/10.1016/j.jpowsour.2010.09.031
  13. P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, M.C. Wu, L. Shi, W. Shyy and T.S. Zhao, Appl. Energy, 2017, 204, 780-806. https://doi.org/10.1016/j.apenergy.2017.07.054
  14. R. Black, B. Adams and L.F. Nazar, Adv. Energy Mater., 2012, 2(7), 801-815. https://doi.org/10.1002/aenm.201200001
  15. Z. Peng, S.A. Freunberger, Y. Chen and P.G. Bruce, Science, 2012, 337, 563-566. https://doi.org/10.1126/science.1223985
  16. H. Kim, H.D. Lim, J. Kim and K. Kang, J. Mater. Chem. A, 2014, 2(1), 33-47. https://doi.org/10.1039/C3TA12522J
  17. F. Li, T. Zhang and H. Zhou, Energy Environ. Sci., 2013, 6(4), 1125-1141. https://doi.org/10.1039/c3ee00053b
  18. P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Nat. Mater., 2012, 11(1), 19-29. https://doi.org/10.1038/nmat3191
  19. B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J. Zhou, C.V. Thompson and Y. Shao-Horn, Energy Environ. Sci., 2013, 6(8), 2518-2528. https://doi.org/10.1039/c3ee40998h
  20. C.S. Park, K.S. Kim and Y.J. Park, J. Power Sources, 2013, 244, 72-79. https://doi.org/10.1016/j.jpowsour.2013.03.153
  21. K.R. Yoon, D.S. Kim, W.H. Ryu, S.H. Song, D.Y. Youn, J.W. Jung, S. Jeon, Y.J. Park and I.D. Kim, Chemsuschem., 2016, 9(16), 2080-2088. https://doi.org/10.1002/cssc.201600341
  22. J. Lu, Y.J. Lee, et al, Nature, 2016, 529(7586), 377-382. https://doi.org/10.1038/nature16484
  23. Z.W. Chang, J.J. Xu, Q.C. Liu, L. Li and X.B. Zhang, Adv. Energy Mater., 2015, 5(21), 1500633. https://doi.org/10.1002/aenm.201500633
  24. D.S. Kim and Y.J. Park, Electrochim. Acta, 2014, 132, 297-306. https://doi.org/10.1016/j.electacta.2014.03.175
  25. A. Debart, A.J. Paterson, J. Bao and P.G. Bruce, Angew. Chem., 2008, 120, 4597-4600. https://doi.org/10.1002/ange.200705648
  26. W.J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A.A. Frimer, H.G. Jung, D. Aurbach and Y.K. Sun, Energy Environ. Sci., 2016, 9(7), 2334-2345. https://doi.org/10.1039/C6EE00700G
  27. T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim and C.P. Grey, Science, 2015, 350(6260), 530-533. https://doi.org/10.1126/science.aac7730
  28. C.K. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2016, 8(13), 8561-8567. https://doi.org/10.1021/acsami.6b01775
  29. X. Gao, Y. Chen, L. Johnson and P.G. Bruce, Nat. Mater., 2016, 15(8), 882-888. https://doi.org/10.1038/nmat4629
  30. H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R.O. Robles, X. Lepro, R.H. Baughman and K. Kang, Adv. Mater., 2013, 25(9), 1348-1352. https://doi.org/10.1002/adma.201204018
  31. T.H. Yoon and Y.J. Park, RSC Adv., 2014, 4(34), 17434-17442. https://doi.org/10.1039/c4ra01015a
  32. S.H. Yoon and Y.J. Park, Sci. Rep., 2017, 7, 42617. https://doi.org/10.1038/srep42617
  33. Y.C. Lu and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 4(1), 93-99. https://doi.org/10.1021/jz3018368
  34. D.S. Kim and Y.J. Park, J. Alloy. Compd., 2014, 591, 164-169. https://doi.org/10.1016/j.jallcom.2013.12.208
  35. R. Padbury and X. Zhang, J. Power Sources, 2011, 196(10), 4436-4444. https://doi.org/10.1016/j.jpowsour.2011.01.032
  36. G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson and W. Wilcke, J. Phys. Chem. Lett., 2010, 1(14), 2193-2203. https://doi.org/10.1021/jz1005384
  37. M.M. Ottakam Thotiyl, S.A. freunberger, Z. Peng and P.G. Bruce, J. Am. Chem. Soc., 2012, 135, 494-500.
  38. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov and A. C. Luntz, J. Phys. Chem. Lett., 2012, 3(8), 997-1001. https://doi.org/10.1021/jz300243r
  39. C.K. Lee, Y.J. Park, Chem. Commun., 2015, 51(7), 1210-1213. https://doi.org/10.1039/C4CC08542F
  40. D.H. Yoon, S.H. Yoon, K.S. Ryu and Y.J. Park, Sci. Rep., 2016, 6, 19962. https://doi.org/10.1038/srep19962
  41. J.Y. Kim and Y.J. Park, Sci. Rep., 2017, 7, 8610. https://doi.org/10.1038/s41598-017-09219-9
  42. S.H. Yoon and Y.J. Park, RSC Adv., 2017, 7(89), 56752-56759. https://doi.org/10.1039/C7RA11607A
  43. N.R. Kim, S.Y. Kee, S.H. Lee, B. H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim and K.H. Lee, Adv. Mater., 2014, 26(14), 2268-2272. https://doi.org/10.1002/adma.201304611
  44. M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu and P.G. Bruce, Nature Mater., 2013, 12(11), 1050-1056. https://doi.org/10.1038/nmat3737
  45. C.K. Lee and Y.J. Park, Nanoscale Res. Lett., 2015, 10(1), 319. https://doi.org/10.1186/s11671-015-1027-8
  46. A. Riaz, K.N. Jung, W. Chang, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, S. Yoon, K.H. Shin and J.W. Lee, Chem. Commun., 2013, 49(53), 5984-5986. https://doi.org/10.1039/c3cc42794c
  47. Y. Cui, Z. Wen and Y. Liu, Energy Environ. Sci., 2011, 4(11), 4727-4734. https://doi.org/10.1039/c1ee02365a