DOI QR코드

DOI QR Code

Ionic Equilibria and Ion Exchange of Molybdenum(VI) from Strong Acid Solution

  • Lee, Man-Seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Sohn, Seong-Ho (Korea Institute of Industrial Technology, Incheon Technology Service Center) ;
  • Lee, Myung-Ho (Nuclear Chemistry Research Division, Korea Atomic Research Institute)
  • Received : 2011.06.09
  • Accepted : 2011.08.18
  • Published : 2011.10.20

Abstract

Ion exchange experiments of molybdenum(VI) from strong HCl and $H_2SO_4$ solution have been done to investigate the existence of anionic complexes. The concentration of HCl and $H_2SO_4$was changed from 1 to 9 M. From the data on the complex formation of molybdenum in aqueous solution, a new distribution diagram of Mo(VI) was constructed in the pH range from zero to 10. AG 1 X-8, an anion exchange resin, and Diphonix, a cation exchange resin were used in the loading experiments. Ion exchange results indicate that anionic complexes of Mo(VI) begins to form from 3 M HCl and 1 M $H_2SO_4$ solution and the tendency to form anionic complexes is stronger in HCl than in $H_2SO_4$ solution. Our results can be utilized in the analysis of Mo(VI) in strong acid solution and in the design of a process to separate Mo(VI).

Keywords

References

  1. Parhi, P. K.; Park, K. H.; Kim, H. I.; Park, J. T. Hydrometallurgy 2011, 105, 195. https://doi.org/10.1016/j.hydromet.2010.09.004
  2. Park, K. H.; Kim, H. I.; Parhi, P. K. Separation and Purification Technology 2010, 74, 294. https://doi.org/10.1016/j.seppur.2010.06.018
  3. Kim, J. I.; Park, S. J.; Kim, S. B. Fluid Phase Equilibria 2010, 295, 172. https://doi.org/10.1016/j.fluid.2010.04.016
  4. Li, Z.; Chu, Y. C. Hydrometallurgy 2009, 98, 10. https://doi.org/10.1016/j.hydromet.2009.03.012
  5. Li, Z.; Chu, Y. C. Hydrometallurgy 2010, 101, 141. https://doi.org/10.1016/j.hydromet.2009.12.008
  6. Lee, M. S.; Oh, Y. J. Materials Transactions 2004, 45, 1317. https://doi.org/10.2320/matertrans.45.1317
  7. Cruywagen, J. J. Advances in Inorganic Chemistry 2000, 49, 127.
  8. Cruywagen, J. J.; Draaijer, A. G.; Heyns, J. B. B.; Rohwer, E. A. Inorganica Chimica Acta 2002, 331, 322. https://doi.org/10.1016/S0020-1693(02)00700-4
  9. Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution, IUPAC, Oxford: UK, 1985; p 462.

Cited by

  1. Separation of Mo from Chloride Leach Liquors of Petroleum Refining Catalysts by Ion Exchange vol.54, pp.9, 2013, https://doi.org/10.2320/matertrans.M2013141
  2. Recovery of molybdenum from alkali leaching solution of low-grade molybdenum concentrate by ion exchange vol.4, pp.4, 2015, https://doi.org/10.1515/gps-2015-0033
  3. The behaviour of selected fission products and actinides on UTEVA® resin vol.307, pp.3, 2016, https://doi.org/10.1007/s10967-016-4706-8
  4. Solvent Extraction of Molybdenum (VI) from Hydrochloric Acid Leach Solutions Using P507. Part I: Extraction and Mechanism vol.35, pp.2, 2017, https://doi.org/10.1080/07366299.2017.1308154
  5. O system for separation of molybdenum and iron vol.115, pp.1, 2018, https://doi.org/10.1051/metal/2017069
  6. Solvent extraction of molybdenum (VI) from spent hydroprocessing catalyst pp.19447442, 2019, https://doi.org/10.1002/ep.13169
  7. Removal of Metallic Impurities from Off-Grade Copper Concentrate in Alkaline Solution vol.7, pp.2, 2018, https://doi.org/10.4236/ijnm.2018.72002
  8. 몰리브덴의 용액화학 vol.27, pp.4, 2011, https://doi.org/10.7844/kirr.2018.27.4.44
  9. Sustainable Extraction and Separation of Rhenium and Molybdenum from Model Copper Mining Effluents Using a Polymeric Aqueous Two-Phase System vol.7, pp.1, 2011, https://doi.org/10.1021/acssuschemeng.8b05759
  10. Chemical forms of molybdenum ion in nitric acid solution studied using liquid-phase X-ray absorption fine structure, Ultraviolet–Visible absorption spectroscopy and first-principles calculations vol.723, pp.None, 2011, https://doi.org/10.1016/j.cplett.2019.02.049
  11. Rapid simultaneous recovery and purification of calcium and molybdenum from calcium molybdate-based crystal waste vol.21, pp.6, 2011, https://doi.org/10.1007/s10163-019-00888-4
  12. A Biotechnological Strategy for Molybdenum Extraction Using Acidithiobacillus ferrooxidans vol.193, pp.3, 2011, https://doi.org/10.1007/s12010-020-03468-7
  13. Molybdenum(VI) Sequestration Mechanisms During Iron(II)-Induced Ferrihydrite Transformation vol.5, pp.8, 2011, https://doi.org/10.1021/acsearthspacechem.1c00152
  14. EFFECTIVE SIMULTANEOUS SEPARATION OF COPPER (II) AND MOLYBDENUM (VI) FROM RHENIUM (VII) BY ADSORPTION ON X- ALUMINA vol.57, pp.2, 2022, https://doi.org/10.1080/01496395.2021.1891436