• 제목/요약/키워드: H-convex functions

검색결과 39건 처리시간 0.021초

TWO POINTS DISTORTION ESTIMATES FOR CONVEX UNIVALENT FUNCTIONS

  • Okada, Mari;Yanagihara, Hiroshi
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.957-965
    • /
    • 2018
  • We study the class $C{\mathcal{V}} ({\Omega})$ of analytic functions f in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}$ : ${\mid}z{\mid}$ < 1} of the form $f(z)=z+{\sum}_{n=2}^{\infty}a_nz^n$ satisfying $$1+\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}{\in}{\Omega},\;z{\in}{\mathbb{D}}$$, where ${\Omega}$ is a convex and proper subdomain of $\mathbb{C}$ with $1{\in}{\Omega}$. Let ${\phi}_{\Omega}$ be the unique conformal mapping of $\mathbb{D}$ onto ${\Omega}$ with ${\phi}_{\Omega}(0)=1$ and ${\phi}^{\prime}_{\Omega}(0)$ > 0 and $$k_{\Omega}(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\exp}\({\displaystyle\smashmargin{2}{\int\nolimits_{0}}^t}{\zeta}^{-1}({\phi}_{\Omega}({\zeta})-1)d{\zeta}\)dt$$. Let $z_0,z_1{\in}{\mathbb{D}}$ with $z_0{\neq}z_1$. As the first result in this paper we show that the region of variability $\{{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0)\;:\;f{\in}C{\mathcal{V}}({\Omega})\}$ coincides wth the set $\{{\log}\;k^{\prime}_{\Omega}(z_1z)-{\log}\;k^{\prime}_{\Omega}(z_0z)\;:\;{\mid}z{\mid}{\leq}1\}$. The second result deals with the case when ${\Omega}$ is the right half plane ${\mathbb{H}}=\{{\omega}{\in}{\mathbb{C}}$ : Re ${\omega}$ > 0}. In this case $CV({\Omega})$ is identical with the usual normalized class of convex univalent functions on $\mathbb{D}$. And we derive the sharp upper bound for ${\mid}{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0){\mid}$, $f{\in}C{\mathcal{V}}(\mathbb{H})$. The third result concerns how far two functions in $C{\mathcal{V}}({\Omega})$ are from each other. Furthermore we determine all extremal functions explicitly.

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF

진화 알고리즘을 이용한 전력경제급전에 관한 연구 (A Study on Economic Power dispatch Using Evolutionary Algorithm)

  • 양승오;문경준;황기현;이화석;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.12-14
    • /
    • 1994
  • Traditionally one convex cost function for each generation is assumed in economic power dispatch. However, it is more realistic to represent the cost function as a piecewise quadratic function rather than one convex function. This paper presents evolutionary algorithm approaches to solve the problems of economic power dispatch with quadratic cost functions and piecewise quadratic cost functions. To improve GA, EP and ES characteristics. optimization methods combining GA with ES and EP with ES are proposed. The results for the proposed algorithms are compared with those of numerical method and show the better solutions in the ELD problem.

  • PDF

PRODUCT AND CONVOLUTION OF CERTAIN UNIVALENT FUNCTIONS

  • Jain, Naveen Kumar;Ravichandran, V.
    • 호남수학학술지
    • /
    • 제38권4호
    • /
    • pp.701-724
    • /
    • 2016
  • For $f_i$ belonging to various subclasses of univalent functions, we investigate the product given by $h(z)=z{\prod_{i=1}^{n}}(f_i(z)/z)^{{\gamma}_i}$.The largest radius ${\rho}$ is determined such that $h({\rho}z)/{\rho}$ is starlike of order ${\beta}$, $0{\leq}{\beta}$ < 1 or to belong to other subclasses of univalent functions. We also determine the sharp radius of starlikeness of order ${\beta}$and other radius for the convolution f*g of two starlike functions f, g.

A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

  • Sangle, N.D.;Metkari, A.N.;Joshi, S.B.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.887-902
    • /
    • 2021
  • In this paper, we have introduced a generalized class SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼), i ∈ {0, 1} of harmonic univalent functions in unit disc 𝕌, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). We further obtained extreme points, bounds and a covering result for the class 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of 𝜙 and 𝜓 are considered, which lead to various well-known results.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

CERTAIN GEOMETRIC PROPERTIES OF MODIFIED LOMMEL FUNCTIONS

  • Din, Muhey U;Yalcin, Sibel
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.719-731
    • /
    • 2020
  • In this article, we find some sufficient conditions under which the modified Lommel function is close-to-convex with respect to - log(1 - z) and ${\frac{1}{2}}\;{\log}\;\({\frac{1+z}{1-z}}\)$. Starlikeness, convexity and uniformly close-to-convexity of the modified Lommel function are also discussed. Some results related to the H. Silverman are also the part of our investigation.

HYPERBOLIC TYPE CONVEXITY AND SOME NEW INEQUALITIES

  • Toplu, Tekin;Iscan, Imdat;Kadakal, Mahir
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.301-318
    • /
    • 2020
  • In this paper, we introduce and study the concept of hyperbolic type convexity functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for this class of functions. In addition, we obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is hyperbolic convexity. Moreover, we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean integral inequalities.