• Title/Summary/Keyword: H-bonds

Search Result 492, Processing Time 0.026 seconds

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.

Observation for drying non-uniformity of allium vegetables using NIR spectroscopy (근적외 분광법을 이용한 양념 야채의 건조 불균일성 관찰)

  • Cho, Hyeong Ho;Lee, Seon Mi;Park, Sang Wook;Cho, Rae Kwang
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.838-843
    • /
    • 2014
  • In this study, near-infrared spectroscopy was used to observe the drying non-uniformity of vegetables such as spring onions, onions, and garlic, which are commonly used for seasoning. For the warm-air convection drying method, the vegetables showed drying non-uniformity, which is due to the unevenness of the wind temperature and humidity depending on the height and position of the drying tray. The second derivative spectra between the vegetable samples with different drying degrees were compared. The peak at around 1,390~1,400 nm, which is assigned to weak hydrogen bonds of water, was changed during drying whereas the peak near 1,420 nm, which represents strong hydrogen (H-) bonds of water, was not changed, indicating that water with weak H-bonds evaporates first during drying, and that water with strong H-bonds remains after drying. The hyperspectral NIR imaging technique combined with principal-component analysis made it possible to discriminate the dried vegetables according to their drying degree.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

The Crystal and Molecular Structure of Salicylaldehyde-4-piperidinothiosemicarbazone (Salicylaldehyde-4-piperidinothiosemicarbazone의 결정 및 분자구조)

  • Young-Ja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.3-14
    • /
    • 1976
  • The crystal structure of alicylaldehyde-4-piperidinothiosemicarbazone, $C_{13}H_{l7}N_3OS$, has been determined by single crystal X-ray analysis. The crystals are orthorhombic, space group $P2_12_12_1$, with unit cell dimensions a = 6.52(2), b = 13.42(4), c = 14.92(4)${\AA}$. There are four formular units in a unit cell. The structure was solved by the heavy atom method and refined by isotropic block diagonal least-squares methods to a final R value of 0.10 for 1019 observed reflections. The oxygen atom of the hydroxyl group is involved in two hydrogen bonds, one as donor in the intramolecular O-H${\cdots}$N hydrogen bond and the other as acceptor in the intermolecular N-H${\cdots}$O hydrogen bond, the distances of the hydrogen bonds 2.56 and 3.00${\AA}$ respectively.The molecules are joined into infinite columns by the N-H${\cdots}o$O hydrogen bonds which form spirals along the two fold screw axis parallel to the a axis. The molecular columns are held together by van der Waals forces.

  • PDF

A study on the formation and properties of TMDSO/$O_2$ thin film by the RF Plasma CVD (RF Plasma CVD에 의한 TMDSO/$O_2$의 합성과 박막의 특성에 관한 연구)

  • Kim, I.S.;Kim, G.Y.;Kang, D.P.;Yun, M.S.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.265-268
    • /
    • 1991
  • In the study, PPTMDSO(plasma-polymerized tetramethyldisiloxane) films were deposited on on glass substrate in a paralled plate reactor. As the function of RF power increased from 20 W to 110 W, and the substrate temperature increased from $25^{\circ}C$ to $100^{\circ}C$, the deposit ion rate, increased. When oxygen was intentionally added in monomer vapor, the concentration of Si-O-Si bonds increased while C-H, Si-H, -CH3, Si(CH3)x, -CH3, and Si-C bonds decreased in IR spectra. Thermal stability of PPTMSDO film were investigated and weight loss at $800^{\circ}C$ was 7.3 %.

  • PDF

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

In-situ Fluorine Passivation by Excimer Laser Annealing

  • Jung, Sang-Hoon;Kim, Cheon-Hong;Jeon, Jae-Hong;Yoo, Juhn-Suk;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.155-156
    • /
    • 2000
  • We propose a new in-situ fluorine passivation of poly-Si TFTs by excimer laser annealing to reduce the trap density and improve the reliability significantly. This improvement is due to the formation of stronger Si-F bonds than Si-H bonds which passivate the trap states.

  • PDF

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

Spectral and Geometrical Study of Two Cadmium Complexes, mer-R,S-[Cd(aepn)2]X2 (X: I-, Cl-, aepn: N-(2-Aminoethyl)-1,3-propanediamine) Supported by Solution Experiments

  • Hakimi, Mohammad;Mardani, Zahra;Moeini, Keyvan
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.447-454
    • /
    • 2013
  • In this research, two new complexes of N-(2-aminoethyl)-1,3-propanediamine (aepn), $[Cd(aepn)_2]I_2$ (1) and $[Cd(aepn)_2]Cl_2{\cdots}H_2O$ (2), were prepared and identified by elemental analysis, FT-IR, Raman spectroscopy and single-crystal X-ray diffraction. Geometry around the cadmium atom in two complexes by coordination of six nitrogen atoms of two aepn is distorted octahedral. If distortion in the mer-$[Cd(aepn)_2]^{2+}$ cation is disregarded, it has a $C_2$ axis and $C_2$ symmetry. The cyclic voltammetry experiments were carried out to study the complexation process. Two structural surveys on coordination modes and complexes of aepn are presented. A study was carried out using CSD data to estimate the averages of bond lengths for different types of the Cd-N bonds. It was found that the intermolecular $N-H{\cdots}I$, $C-H{\cdots}I$ hydrogen bonds in 1 and $N-H{\cdots}Cl$, $N-H{\cdots}O$, $C-H{\cdots}O$, $O-H{\cdots}Cl$ in 2 stabilized the crystal networks.