DOI QR코드

DOI QR Code

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Oh, Jae-Buem (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Nah, Min-Kook (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Baek, Nam-Seob (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Lee, Young-Il (Dongbu Research Council) ;
  • Kim, Hwan-Kyu (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University)
  • Published : 2004.10.20

Abstract

New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

Keywords

References

  1. Kim, H. K.; Roh, S. G.; Hong, K.-S.; Ka, J.-W.; Baek, N. S.; Oh,J. B.; Nah, M. K.; Ma, S. M.; Cha, Y. H.; Ko, J. Macromol. Res.2003, 11(3), 133 https://doi.org/10.1007/BF03218343
  2. Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.;Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408. https://doi.org/10.1021/ja00142a004
  3. Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Peters, F. G. A.; vanBeelen, E. S. E.; Hofstraat, J. W.; Guerts, F. A. J.; Reinhoudt, D.N. Chem. Eur. J. 1998, 4, 772. https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5<772::AID-CHEM772>3.0.CO;2-3
  4. Slooff, L. H.; Polman, A.; Oude Wolbers, M. P.; van Veggel, F. C.J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1998, 83,497. https://doi.org/10.1063/1.366721
  5. Klink, S. I.; Hebbink, G. A.; Grave, L.; van Veggel, F. C. J. M.;Reinhoudt, D. N.; Slooff, L. H. J. Appl. Phys. 1999, 86, 1181. https://doi.org/10.1063/1.370867
  6. Pitois, C.; Vestberg, R.; Rodlert, M.; Malmström, E.; Hult, A.;Lindgren, M. Opt. Mater. 2002, 21, 499. https://doi.org/10.1016/S0925-3467(02)00190-8
  7. Destri, S.; Porzio, W.; Meinardi, F.; Tubino, R.; Salerno, G.Macromolecules 2003, 36, 273. https://doi.org/10.1021/ma025590v
  8. Roh, S. G.; Baek, N. S.; Hong, K.-S.; Kim, H. K. Bull. KoreanChem. Soc. 2004, 25, 343. https://doi.org/10.5012/bkcs.2004.25.3.343
  9. Oh, J. B.; Paik, K. L.; Ka, J.-W.; Roh, S.-G.; Nah, M.-K.; Kim, H.K. Mater. Sci. & Eng. C 2004, 24, 257. https://doi.org/10.1016/j.msec.2003.09.054
  10. Baek, N. S.; Nah, M.-K.; Kim, Y. H.; Roh, S. G.; Kim, H. K.Bull. Korean Chem. Soc. 2004, 25, 443. https://doi.org/10.1007/s11814-008-0075-5
  11. Kim, H. K.; Oh, J. B.; Baek, N. S.; Ka, J.-W.; Roh, S. G.; Kim, Y. H.; Nah, M. K.; Hong,K.-S.; Song, B. J.; Zhou, G. J. Nonlinear Optical Physics &Materials, accepted, 2004.
  12. Kawa, M.; Frechet, M. J. Chem. Mater. 1998, 10, 286. https://doi.org/10.1021/cm970441q
  13. Paik, K. L; Kim, H. K. Mol. Cryst. & Liq. Cryst. 2001, 370, 185. https://doi.org/10.1080/10587250108030067
  14. Kim, H. K.; Roh, S. G.; Ka, J. W.; Kim, Y. H.; Nah, M. K.; Oh, J.B.; Baek, N. S. Korean Patent and International PCT Patent filed(January 31, 2004; PCT/KR2004/000181).
  15. Rardin, R. L.; Tolman; W. B.; Lippard, S. J. New J. Chem. 1991,15, 417.
  16. Desurvire, E. Erbium-doped Fiber Amplifiers: Principles andApplications; John Wiley & Sons: New York, 1994; Chapter 4.

Cited by

  1. β-Diketonato Complex with Multiple Relaxation Mechanisms vol.2014, pp.3, 2013, https://doi.org/10.1002/ejic.201301076
  2. )-incorporated polymer nanocomposite from an organogel template vol.41, pp.21, 2017, https://doi.org/10.1039/C7NJ02221B
  3. Lanthanide Fluorobenzoates as Bio-Probes: a Quest for the Optimal Ligand Fluorination Degree pp.09476539, 2017, https://doi.org/10.1002/chem.201703543
  4. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates vol.21, pp.49, 2015, https://doi.org/10.1002/chem.201501816
  5. High sensitization efficiency and energy transfer routes for population inversion at low pump intensity in Er organic complexes for IR amplification vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-21700-7
  6. Enhancing the sensitization efficiency of erbium doped organic complexes by heavy halogen substitution vol.6, pp.26, 2018, https://doi.org/10.1039/C8TC00971F
  7. The First Inert and Photostable Encapsulated Lanthanide(III) Complexes Based on Dendritic 9,10-Diphenylanthracene Ligands: Synthesis, Strong Near-Infrared Emission Enhancement, and Photophysical Studies vol.16, pp.14, 2006, https://doi.org/10.1002/adfm.200500835
  8. ErIII-Cored Complexes Based on Dendritic PtII–Porphyrin Ligands: Synthesis, Near-IR Emission Enhancement, and Photophysical Studies vol.17, pp.3, 2007, https://doi.org/10.1002/adfm.200600451
  9. Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications vol.26, pp.2, 2004, https://doi.org/10.5012/bkcs.2005.26.2.201
  10. Synthesis and Photophysical Properties of Luminescent Lanthanide Complexes Based on Dansyl- N -Methyl-Aminobenzoic Acid for Advanced Photonics Applications vol.446, pp.1, 2006, https://doi.org/10.1080/15421400500379962
  11. Novel Erbium(III)-Encapsulated Complexes Based on ${\pi}$-Extended Anthracene Ligands Bearing G3-Aryl-Ether Dendron: Synthesis and Photophysical Studies vol.17, pp.9, 2009, https://doi.org/10.1007/bf03218927
  12. Second sphere coordination in fluoroanion binding: Synthesis, spectroscopic and X-ray structural study of [Co(phen)2CO3](Pfbz)·6H2O vol.130, pp.7, 2004, https://doi.org/10.1016/j.jfluchem.2009.04.011
  13. Segregated aromatic π–π stacking interactions involving fluorinated and non-fluorinated benzene rings: Cu(py)2(pfb)2 and Cu(py)2(pfb)2(H vol.131, pp.4, 2004, https://doi.org/10.1016/j.jfluchem.2009.12.020
  14. Sol-gel preparation of near-infrared broadband emitting Er3+-doped SiO2-Ta2O5 nanocomposite films vol.519, pp.4, 2004, https://doi.org/10.1016/j.tsf.2010.09.035
  15. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis vol.1128, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2016.08.053