• Title/Summary/Keyword: H-bonds

Search Result 492, Processing Time 0.035 seconds

THIN FILM GROWTH AND SURFACE REACTION ON H-TERMINATED SILICON SURFACE

  • Yasuda, Yukio;Zaima, Shigeaki
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.407-414
    • /
    • 1996
  • We have investigated the effects of H atoms on thin film growth processes and surface reactions. In the oxidation of Si, Si surfaces are passivated against the $O_2$ adsorption by terminating dangling bonds with H atoms. Moreover, the existence of Si-H bonds on Si(100) surfaces enhances the structural relaxation of Si-O-Si bonds due to a charge transfer from Si-Si back bonds. In the heteroepitaxial growth of a Si/Ge/Si(100) system, H atoms suppress the segregation of Ge atoms into Si overlayers since the exchange of Ge atoms with Si atoms bound with H must be accompanied with breaking of Si-H bonds. However, 3-dimensional island growth is also promoted by atomic H irradiation, which is considered to result from the suppression of surface migration of adsorbed reaction species and from the lowering of step energies by the H termination of dangling bonds.

  • PDF

Nanostructural Features of nc-Si : H Thin Films Prepared by PECVD (PECVD 기법에 의해 제조된 nc-Si : H 박막의 나노 구조적 특성)

  • 심재현;정수진;조남희
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • Nanocrystalline hydrogenated silicon (nc-Si : H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD): a mixture of SiH₄ and H₂ gas was introduced into the evacuated reaction chamber. When the H₂ gas flow rate was low, the density of Si-H₃ bonds was high in the films. On the other hand, when the H₂ gas flow rate was high, e.g., 100 sccm, a large number of Si-H bonds contributed to the passivation of the surface of the large volume of Si nanocrystallites. The relative fraction of the Si-H₃ and Si-H₂ bonds in the amorphous matrix varied sensitively with the H₂ gas flow rate. The variation was associated with the change in the intensity as well as the wavelength of the main PL peaks, indicating the change in the total volume as well as the size of the Si nanocrystallites in the films.

An Analysis of Light-Induced Degradation of PECVD a-Si Films Using $SiF_4$ ($SiF_4$를 이용하여 증착한 PECVD 박막의 빛에 의한 열화도 특성 분석)

  • Jang, K.H.;Choi, H.S.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1019-1021
    • /
    • 1995
  • Light induced degradation of hydrogenated amorphous silicon(a-Si:H) are related to the number of weak dangling bonds which are thought to be responsible for the Staebler-Wronski effects, and caused the many photoelectric problems in applications of thin film transistors and solar cell, etc. In this paper, we deposited fluorinated amorphous silicon films(a-Si:H;F) with $SiH_4$ and $SiF_4$ gas mixture and investigated the effects of fluorine atoms on the evoluations of the crystallinity and improvements of light instability. We have found that micro-crystallinity produced in a-SI:H;F films and marked maximum value of 22% at the flow rate of $SiH_4:SiF_4$=2:10 sccm by UV spectrophotometer measurement, while n-Si:H film deposited with only $SiH_4$ gas showed no crystallinity. Light-induced degradation property of a-Si:H;F films is also improved which is mainly due to the etching effects of fluorine atoms on the weak Si-Si bonds and unstable hydrogen bonds. It is considered that involving fluorine atoms in a-Si:H films may contribute to the suppression of light-induced degradation and evolution of micro-crystallinity.

  • PDF

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Dihydrogen Phosphate Selective Anion Receptor Based on Acylhydrazone

  • Pandian, T. Senthil;Kang, Jongmin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2025-2028
    • /
    • 2014
  • Anion receptor 1 based on acylhydrazone has been designed and synthesized. UV-vis and $^1H$ NMR titration showed that receptor 1 is selective receptor for dihydrogen phosphate ($H_2PO_4{^-}$). Dihydrogen phosphate was complexed by the receptor 1 via at least 4 hydrogen bonding interactions, contributing from two amide N-Hs and two imine C-Hs. In addition, nitrogen in the aromatic ring could make 2 additional hydrogen bondings with OH groups in the dihydrogen phosphate. However, the receptor 1 could make only 4 hydrogen bonds with halides. Therefore, receptor 1 could bind anions through hydrogen bonds with a selectivity in the order of $H_2PO_4{^-}$ > $Br^-$ > $Cl^-$ in highly polar solvent such as DMSO.

Theoretical Studies for Strong Hydrogen Bonds in Trimethyl Phosphate-(HNO3)n Complexes, n=1-3

  • Kim, Yong-Ho;Kim, Hak-Won;Park, Kwang-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1811-1815
    • /
    • 2002
  • We have calculated energies and structures for the hydrogen bonded clusters between trimethyl phosphate and nitric acids. The hydrogen bond lengths between phosphoryl oxygen and the proton of nitric acid are short compared to normal hydrogen bonds, and the H-bond strengths are fairly strong. The hydrogen bond length becomes longer, and the strength becomes weaker, as more nitric acids are bound to the TMP. The average H-bond strengths for the $TMP-(HNO_3)_n$ complexes with n = 1, 2, and 3, are 9.6, 7.9 and 6.4kcal/mol at 300K respectively. Weak hydrogen bonds between nitrate oxygen and methyl proton might contribute to the stability of the clusters. Not only the BSSE but also the fragment relaxation energies should be considered to calculate hydrogen bond strengths for the complexes accurately.

Interaction Between Barbiturate and Membrane Components

  • Yu, Byung-Sul;Jo, Seong-Bong;Kim, Chong-Kook;Hwang, Young-Sik
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.246-251
    • /
    • 1990
  • Intermolecular interaction between barbiturates and membrane components such as phospholipid and cholesterol were investigated on $^1$H-NMR spectra and infrared spectra. According to previous reports, barbiturates interacted with phospholipid through intermolecular hydrogen bonds. We also investigated thi observation using dipalmitoyl-phosphatidylcholine (DPPC) as phospholipid in deuterochloroform, and characterized quantitatively. Also, the observed drug could interact with cholesterol which is one of the major components of biomembranes through hydrogen bonds. It was the carbonyl groups of barbiturate and the hydroxyl group of cholesterol that formed hydrogen bond complex. In addition to spectroscopic studies, we investigated the direct effect of phenobarbital on lipid multibilayer vesicles, whose compositions were varied, by calorimetric method. Phenobarbital caused a reduction in the temperature of phase transition of vesicles. These studies may provided a basis for interpreting the mode of action of barbiturates.

  • PDF

Redistribution/Dehydrocoupling of Tertiary Alkylstannane $n-Bu_3 SnH$ Catalyzed by Group 4 and 6 transition Metal Complexes

  • 우희권;송선정;김보혜
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1161-1164
    • /
    • 1998
  • The catalytic transformation of sterically bulky tertiary stannane n-Bu3SnH by the Cp2MCl2/Red-Al (M=Ti, Zr, Hf) and M(CO)6 (M=Cr, Mo, W) catalysts yielded two kinds of catenated products: one is a cross-linked polystannane as minor product, and the other is hexabutyldistannane (n-Bu3Sn)2 as major product. The distannane was produced by simple dehydrocoupling of n-Bu3SnH, whereas the cross-linked polystannane could be obtained via redistribution/dehydrocoupling combination process of n-Bu3SnH. The redistribution/dehydrocoupling combination process may initially produce a low-molecular-weight oligostannane with partial backbone Sn-H bonds which could then undergo an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane.

Catalytic Dehydropolymerization of Di-n-butylstannane n-$Bu_2SnH_2$ by Group 4 and 6 Transition Metal Complexes

  • 우희권;박종목;송선정;양수연;김익식;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1291-1295
    • /
    • 1997
  • The catalytic dehydrocoupling of di-n-butylstannane n-Bu2SnH2 by the Cp2MCl2/Red-Al (M = Ti, Zr, Hf) and M(CO)6/Red-Al in situ combination catalysts yielded a mixture of two kinds of catenated products: one is a cross-linked insoluble solid, and the other is a non-cross-linked soluble solid (≒Sn5) or viscous oil (≒Sn2). The soluble oligostannanes could be produced by simple dehydrocoupling of n-Bu2SnH2, whereas the insoluble polystannanes could be obtained via disproportionation/dehydrocoupling combination process of n-Bu2SnH2. The disproportionation/dehydrocoupling combination process may initially produce a low-molecular-weight oligostannane with partial backbone Sn-H bonds which could then undergo an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane.

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl·2H2O

  • Pu Su Zhao;Lu De Lu;Fang Fang Jian
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.334-338
    • /
    • 2003
  • The crystal structure of $[Co(phen)_2(Cl)(H_2O)] Clㆍ2H_2O$(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P1, with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)${\AA}$ ${\alpha}$=64.02(1), ${\beta}$=86.364(9), ${\gamma}=78.58(2)^°$, and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33${\AA}$). The intermolecular hydrogen bonds connect the $[Co(phen)_2(Cl)(H_2O)]1+,\;H_2O$ moieties and chloride ion.