• Title/Summary/Keyword: H-beam frame

Search Result 96, Processing Time 0.027 seconds

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

The Estimation of Structural Strength of Improved Frame of Welded Bogie for High Speed Freight Car (고속화차용 용접대차 프레임 개선모델의 강도평가)

  • 황원주;함영삼;강부병;전응식
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.235-239
    • /
    • 2001
  • The bogie of high speed freight car running on conventional line is welded bogie modeled on Y25 bogie developed in Europe. Y25 bogie has speed limit of 110km/h. But it has limiting factors to speed-up as increasing maintenance cost and friction parts pedestal. And also it was reported that cracks are found in the parts where center beam meet bolster and endbeam near bracket for braking part. This study includes stress analysis improved structure of welded bogie for strength evaluation by numerical method and experimental method. According to the study, new configuration bogie shows improvement in strength.

  • PDF

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

A Study on the Behavior of Frame with Connections between H-Beams and S . H . S Columns considering Joint Flexibility (H형강보.각형강관기둥 접합부의 연성도를 고려한 골조의 거동에 관한 연구)

  • 강석봉;김이두;박순규;김재훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.211-218
    • /
    • 1997
  • Analysis of structures are usually executed under the assumption that connections are either ideally pinned joint or fully rigid joint. But in general all structures is connected under the semi-rigid connections. Semi-rigid connect ions have demerits that is simplification work on connection's behavior, moment-rotation relationships of connect ions , apprehension of nonlinear analysis etc. On the other hand there is merits that is improvements of serviceability, economic efficiency, construction in predicting real behavior frames. This study is to make model of connect ions by based on experimental study and after analysis on frames considering characteristics of semi-rigid connections. semi-rigid connection's influence on the behavior of structures and fundamental data on application of structures that is connected between S H S column and H beam is exhibited.

  • PDF

Cyclic Seismic Testing of Full-Scale Column-Tree Type Steel Moment Connections (반복재하 실물대 실험에 의한 컬럼-트리(Column-Tree) 형식 철골 모멘트 접합부의 내진거동 연구)

  • Lee, Cheol Ho;Park, Jong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.629-639
    • /
    • 1998
  • This paper summarizes the results of full-scale cyclic seismic performance tests on three column-tree type steel moment connections. Each test specimen consisted of a $H-600{\times}200$ beam and a $H-400{\times}400$ column of SS41 (SS400). Key parameter included was column PZ (panel zone) strength relative to beam strength. The seismic performance of specimen with stronger PZ tended to be inferior. Total plastic rotations available in the specimens ranged from 1.8 to 3.0 (% rad). The limited test results in this study seem to support the speculation that permitting PZ yielding shall be more beneficial to enhancing total plastic rotation capacity of the moment connection. Beam flange fracture across the heat affected zone and divot-type pullout of the column flange were observed in the tests. A conceptual mechanical model consistent with observed test results was also sought.

  • PDF

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

A computer program for the analysis of reinforced concrete frames with cracked beam elements

  • Tanrikulu, A. Kamil;Dundar, Cengiz;Cagatay, Ismail H.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.463-478
    • /
    • 2000
  • An iterative procedure for the analysis of reinforced concrete frames with beams in cracked state is presented. ACI and CEB model equations are used for the effective moment of inertia of the cracked members. In the analysis, shear deformations are taken into account and reduced shear stiffness is considered by using effective shear modulus models available in the literature. Based on the aforementioned procedure, a computer program has been developed. The results of the computer program have been compared with the experimental results available in the literature and found to be in good agreement. Finally, a parametric study is carried out on a two story reinforced concrete frame.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

An Evaluation of Cutting Performance for Cutting Structural Steel using Charging Container (장약용기를 이용한 강재 절단 성능 평가)

  • Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • The shaped charge was used in explosive demolition of a steel frame structure, but it was often not used because it was limited to use and impossible to supply at domestic and overseas. Existing linear shaped charge did not have sufficient cutting performance to cut steel frame structures with a huge scale and thick steel plate. To solve these problems, we produced a device that could generate metal jets using industrial explosives of high detonation velocity and pressure. In this study, we made a charging container of three types which applicable to explosive demolition of steel frame structures. The experiment of cutting performances was carried out to evaluate the effect of cutting of charging containers on the various thicknesses of the H-beam and steel plate. As a result of the experiment, sufficient cutting performance was confirmed.

The empirical corner stiffness for right-angle frames of rectangular and H-type cross-sections

  • Kwon, Young-Doo;Kwon, Soon-Bum;Gil, Hyuck-Moon;Cho, Hui-Jeong
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.471-485
    • /
    • 2014
  • Until now, the finite corner stiffness of the right-angle frames used as horizontal girders in a bonnet, have not been considered during the design process to result in not a precise result. This paper presents a design equation set for right-angle frames used as horizontal girders in a bonnet assuming rigid corner stiffness. By comparing the center stresses of the right-angle frame according to the design equation set with the results of the finite element method, the master curves for the empirical corner stiffness can be determined as a function of slenderness ratio. A second design equation set for a right-angle frame assuming finite corner stiffness was derived and compared with the first equation set. The master curves for the corner stiffness and the second design equation set can be used to determine the design moments at the centers of the girder so that the bending stresses can be analyzed more precisely.