References
- ABAQUS (2014), ABAQUS/CAE 6.14 User's Manual, Dassault Systemes Simulia, Inc., Johnston, RI, USA.
- Alrubaidi, M. and Alhammadi, S.A. (2022), "Effectiveness of masonry infill walls on steel frames with different beam-column connections under progressive collapse", Struct., 38, 202-224. https://doi.org/10.1016/j.istruc.2022.02.002.
- Asadzadeh, S.A., Zareei, A., Mohammadi, M. and Khaje Ahmad Atari, N. (2021), "Experimental study on finding reliable connectors for infill-frame connection in infilled steel frame", Amirkabir J. Civil Eng., 53(12), 5259-5280. https://doi.org/10.22060/ceej.2021.18761.6953.
- Brodsky, A., Yankelevsky, D.Z. and Rabinovitch, O. (2021), "Shearing of infill masonry walls under lateral and vertical loading", J. Build. Eng., 38, 102147. https://doi.org/10.1016/j.jobe.2021.102147.
- Cassiano, D., D'Aniello, M. and Rebelo, C. (2017), "Parametric finite element analyses on flush end-plate joints under column removal", J. Constr. Steel Res., 137, 77-92. https://doi.org/10.1016/j.jcsr.2017.06.012.
- Chen, X. and Liu, Y. (2017), "Finite element study of the effect of interfacial gaps on the in-plane behaviour of masonry infills bounded by steel frames", Struct., 10, 1-12. https://doi.org/10.1016/j.istruc.2016.11.001.
- Cheng, X., Zou, Z., Zhu, Z., Huang, X., Liang, W., Mo, Y. and Chen, W. (2020), "Experimental study on a steel frame infill wall based on vertical partitioning technology", Eng. Struct., 213, 110565. https://doi.org/10.1016/j.engstruct.2020.110565.
- CSI Computers and Structures (2016), Analysis Reference Manual; CSI Berkeley (CA, USA) Computer and Structures, Computer and Structures Inc., Berkeley, CA, USA.
- D'Aniello, M., Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6), 643-658. https://doi.org/10.12989/scs.2017.24.6.643.
- El-Khoriby, S., Sakr, M.A., Khalifa, T.M. and Eladly, M.M. (2017), "Modelling and behaviour of beam-to-column connections under axial force and cyclic bending", J. Constr. Steel Res., 129, 171-184. https://doi.org/10.1016/j.jcsr.2016.11.006.
- Eladly, M.M. (2017), "Numerical study on masonry-infilled steel frames under vertical and cyclic horizontal loads", J. Constr. Steel Res., 138, 308-323. https://doi.org/10.1016/j.jcsr.2017.07.016.
- Emami, S.M.M. and Mohammadi, M. (2016), "Influence of vertical load on in-plane behavior of masonry infilled steel frames", Earthq. Struct., 11(4), 609-627. https://doi.org/10.12989/eas.2016.11.4.609.
- FEMA (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
- GB/T228-2002 (2002), GB/T 228-2002 Translated English of Chinese Standard (GBT 228-2002, GB/T228-2002, GBT228- 2002): Metallic Materials - Tensile Testing at Ambient Temperature, GB/T 228-2002, A Standard for Metallic Materials-Tensile Testing at Ambient Temperature, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
- Islam, M.T., Noor-E-Khuda, S. and Saito, T. (2022), "A simple infill frame with macro element masonry model for the in-plane performance of infill walls", Struct., 42, 386-404. https://doi.org/ 10.1016/j.istruc.2022.06.014.
- Kahrizi, M. and TahamouliRoudsari, M. (2020) "Experimental study on properties of masonry infill walls connected to steel frames with different connection details", Struct. Durab. Health Monit., 14(2), 165-185. https://doi.org/10.32604/SDHM.2020.07816.
- Kordbagh, B. and Mohammadi, M. (2018), "Influence of panel zone on progressive collapse resistance of steel structures", J. Perform. Constr. Facil., 32, 4018014. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001152.
- Lemonis, M.E., Asteris, P.G., Zitouniatis, D.G. and Ntasis, G.D. (2019), "Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames", Struct. Eng. Mech., 70(4), 421-429. https://doi.org/10.12989/sem.2019.70.4.421.
- Liu, Y. and Manesh, P. (2013), "Concrete masonry infilled steel frames subjected to combined in-plane lateral and axial loading - An experimental study", Eng. Struct., 52, 331-339. https://doi.org/10.1016/j.engstruct.2013.02.038.
- Mahalleh, R. and Mohammadi, M. (2012), "A new infilled steel frame with engineering properties", Proc. Inst. Civil Eng. Struct. Build., 165(1), 15-25. https://doi.org/10.1680/stbu.2012.165.1.15.
- Moghaddam, H., Mohammadi, M. and Ghaemian, M. (2006), "Experimental and analytical investigation into crack strength determination of infilled steel frames", J. Constr. Steel Res., 62, 1341-1352. https://doi.org/10.1016/j.jcsr.2006.01.002.
- Mohammadi, M. (2017) "State of the art on the maximum strength of masonry infilled frames", Sci. Iran., 24, 900-909. https://doi.org/10.24200/sci.2017.4074.
- Mohammadi, M., Akrami, V. and Mohammadi-Ghazi, R. (2011), "Methods to improve infilled frame ductility", J. Struct. Eng., 137, 9. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000322.
- Mohammadi, M. and Motovali Emami, S.M. (2019), "Multi-bay and pinned connection steel infilled frames; an experimental and numerical study", Eng. Struct., 188, 43-59. https://doi.org/10.1016/j.engstruct.2019.03.028.
- Motovali Emami, S.M. and Mohammadi, M. (2020), "Effect of frame connection rigidity on the behavior of infilled steel frames", Earthq. Struct., 19, 227-241. https://doi.org/10.12989/eas.2020.19.4.227.
- Nicola, T., Leandro, C., Guido, C. and Enrico, S. (2015), "Masonry infilled frame structures: State-of-the-art review of numerical modelling", Earthq. Struct., 8, 733-759. https://doi.org/10.12989/eas.2015.8.3.733.
- Pashaie, M.R. and Mohammadi, M. (2021), "An extended multiple-strut model to estimate infill effects on multi-storey steel frames with different connection rigidities", Struct., 30, 710-734. https://doi.org/10.1016/j.istruc.2020.12.035.
- Quayyum, S., Alam, M.S. and Rteil, A. (2013), "Seismic behavior of soft storey mid-rise steel frames with randomly distributed masonry infill", Steel Compos. Struct., 14, 523-545. https://doi.org/10.12989/scs.2013.14.6.523.
- Sakr, M.A., Eladly, M.M., Khalifa, T. and El-Khoriby, S. (2019), "Cyclic behaviour of infilled steel frames with different beamto-column connection types", Steel Compos. Struct., 30(5), 443-456. https://doi.org/10.12989/scs.2019.30.5.443.
- Salinas, D., Koutromanos, I. and Leon, R.T. (2022), "Nonlinear truss modeling method for masonry-infilled reinforced concrete frames", Eng. Struct., 262, 114329. https://doi.org/10.1016/j.engstruct.2022.114329.
- Shan, S., Li, S. and Wang, S. (2019), "Effect of infill walls on mechanisms of steel frames against progressive collapse", J. Constr. Steel Res., 162, 105720. https://doi.org/10.1016/j.jcsr.2019.105720.
- Shi, G., Shi, Y., Wang, Y. and Bradford, M.A. (2008), "Numerical simulation of steel pretensioned bolted end-plate connections of different types and details", Eng. Struct., 30(10), 2677-2686. https://doi.org/10.1016/j.engstruct.2008.02.013.
- Shi, Y., Shi, G. and Wang, Y. (2007), "Experimental and theoretical analysis of the moment-rotation behaviour of stiffened extended end-plate connections", J. Constr. Steel Res., 63(9), 1279-1293. https://doi.org/10.1016/j.jcsr.2006.11.008.
- Song, B.I., Giriunas, K.A. and Sezen, H. (2014), "Progressive collapse testing and analysis of a steel frame building", J. Constr. Steel Res., 94, 76-83. https://doi.org/10.1016/j.jcsr.2013.11.002.
- Song, B.I. and Sezen, H. (2013), "Experimental and analytical progressive collapse assessment of a steel frame building", Eng. Struct., 56, 664-672. https://doi.org/10.1016/j.engstruct.2013.05.050.
- Subramanian, K., Mini, K.M. and Florence, S.J.K. (2005), "Neural network based modeling of infilled steel frames", Struct. Eng. Mech., 21(5), 495-506. https://doi.org/10.12989/sem.2005.21.5.495.
- Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2018.27.6.727.
- Wang, M., Shi, Y., Wang, Y. and Shi, G. (2013), "Numerical study on seismic behaviors of steel frame end-plate connections", J. Constr. Steel Res., 90, 140-152. https://doi.org/10.1016/j.jcsr.2013.07.033.
- Wu, J.R., Di Sarno, L., Freddi, F. and D'Aniello, M. (2022), "Modelling of masonry infills in existing steel moment-resisting frames: Nonlinear force-displacement relationship", Eng. Struct., 267, 114699. https://doi.org/10.1016/j.engstruct.2022.114699.
- Xavier, F.B., Macorini, L., Izzuddin, B.A., Chisari, C., Gattesco, N., Noe, S. and Amadio, C. (2017), "Pushdown tests on masonry infilled frames for assessment of building robustness", J. Struct. Eng., 143(9), 04017088. https://doi.org/10.1061/(asce)st.1943-541x.0001777.
- Yekrangnia, M. and Mohammadi, M. (2017), "A new strut model for solid masonry infills in steel frames", Eng. Struct., 135, 222-235. https://doi.org/10.1016/j.engstruct.2016.10.048.
- Zhang, C., Ling, B., Huang, W., Deng, X., Ding, C., Gao, J. and Zhang, S. (2022), "Cyclic behavior of semi-rigid steel frame infilled with damping wall panels", J. Build. Eng., 51, 104238. https://doi.org/10.1016/j.jobe.2022.104238.