DOI QR코드

DOI QR Code

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak (Department of Civil Engineering, Faculty of Engineering, Kafrelsheikh University) ;
  • Ahmed H. Elmasry (Department of Civil Engineering, Delta Higher Institute for Engineering and Technology) ;
  • Basem O. Rageh (Department of Civil Engineering, Delta Higher Institute for Engineering and Technology)
  • Received : 2022.08.20
  • Accepted : 2023.08.29
  • Published : 2024.01.25

Abstract

In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Keywords

References

  1. ABAQUS (2014), ABAQUS/CAE 6.14 User's Manual, Dassault Systemes Simulia, Inc., Johnston, RI, USA. 
  2. Alrubaidi, M. and Alhammadi, S.A. (2022), "Effectiveness of masonry infill walls on steel frames with different beam-column connections under progressive collapse", Struct., 38, 202-224. https://doi.org/10.1016/j.istruc.2022.02.002. 
  3. Asadzadeh, S.A., Zareei, A., Mohammadi, M. and Khaje Ahmad Atari, N. (2021), "Experimental study on finding reliable connectors for infill-frame connection in infilled steel frame", Amirkabir J. Civil Eng., 53(12), 5259-5280. https://doi.org/10.22060/ceej.2021.18761.6953. 
  4. Brodsky, A., Yankelevsky, D.Z. and Rabinovitch, O. (2021), "Shearing of infill masonry walls under lateral and vertical loading", J. Build. Eng., 38, 102147. https://doi.org/10.1016/j.jobe.2021.102147. 
  5. Cassiano, D., D'Aniello, M. and Rebelo, C. (2017), "Parametric finite element analyses on flush end-plate joints under column removal", J. Constr. Steel Res., 137, 77-92. https://doi.org/10.1016/j.jcsr.2017.06.012. 
  6. Chen, X. and Liu, Y. (2017), "Finite element study of the effect of interfacial gaps on the in-plane behaviour of masonry infills bounded by steel frames", Struct., 10, 1-12. https://doi.org/10.1016/j.istruc.2016.11.001. 
  7. Cheng, X., Zou, Z., Zhu, Z., Huang, X., Liang, W., Mo, Y. and Chen, W. (2020), "Experimental study on a steel frame infill wall based on vertical partitioning technology", Eng. Struct., 213, 110565. https://doi.org/10.1016/j.engstruct.2020.110565. 
  8. CSI Computers and Structures (2016), Analysis Reference Manual; CSI Berkeley (CA, USA) Computer and Structures, Computer and Structures Inc., Berkeley, CA, USA. 
  9. D'Aniello, M., Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6), 643-658. https://doi.org/10.12989/scs.2017.24.6.643. 
  10. El-Khoriby, S., Sakr, M.A., Khalifa, T.M. and Eladly, M.M. (2017), "Modelling and behaviour of beam-to-column connections under axial force and cyclic bending", J. Constr. Steel Res., 129, 171-184. https://doi.org/10.1016/j.jcsr.2016.11.006. 
  11. Eladly, M.M. (2017), "Numerical study on masonry-infilled steel frames under vertical and cyclic horizontal loads", J. Constr. Steel Res., 138, 308-323. https://doi.org/10.1016/j.jcsr.2017.07.016. 
  12. Emami, S.M.M. and Mohammadi, M. (2016), "Influence of vertical load on in-plane behavior of masonry infilled steel frames", Earthq. Struct., 11(4), 609-627. https://doi.org/10.12989/eas.2016.11.4.609. 
  13. FEMA (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA. 
  14. GB/T228-2002 (2002), GB/T 228-2002 Translated English of Chinese Standard (GBT 228-2002, GB/T228-2002, GBT228- 2002): Metallic Materials - Tensile Testing at Ambient Temperature, GB/T 228-2002, A Standard for Metallic Materials-Tensile Testing at Ambient Temperature, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 
  15. Islam, M.T., Noor-E-Khuda, S. and Saito, T. (2022), "A simple infill frame with macro element masonry model for the in-plane performance of infill walls", Struct., 42, 386-404. https://doi.org/ 10.1016/j.istruc.2022.06.014. 
  16. Kahrizi, M. and TahamouliRoudsari, M. (2020) "Experimental study on properties of masonry infill walls connected to steel frames with different connection details", Struct. Durab. Health Monit., 14(2), 165-185. https://doi.org/10.32604/SDHM.2020.07816. 
  17. Kordbagh, B. and Mohammadi, M. (2018), "Influence of panel zone on progressive collapse resistance of steel structures", J. Perform. Constr. Facil., 32, 4018014. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001152. 
  18. Lemonis, M.E., Asteris, P.G., Zitouniatis, D.G. and Ntasis, G.D. (2019), "Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames", Struct. Eng. Mech., 70(4), 421-429. https://doi.org/10.12989/sem.2019.70.4.421. 
  19. Liu, Y. and Manesh, P. (2013), "Concrete masonry infilled steel frames subjected to combined in-plane lateral and axial loading - An experimental study", Eng. Struct., 52, 331-339. https://doi.org/10.1016/j.engstruct.2013.02.038. 
  20. Mahalleh, R. and Mohammadi, M. (2012), "A new infilled steel frame with engineering properties", Proc. Inst. Civil Eng. Struct. Build., 165(1), 15-25. https://doi.org/10.1680/stbu.2012.165.1.15. 
  21. Moghaddam, H., Mohammadi, M. and Ghaemian, M. (2006), "Experimental and analytical investigation into crack strength determination of infilled steel frames", J. Constr. Steel Res., 62, 1341-1352. https://doi.org/10.1016/j.jcsr.2006.01.002. 
  22. Mohammadi, M. (2017) "State of the art on the maximum strength of masonry infilled frames", Sci. Iran., 24, 900-909. https://doi.org/10.24200/sci.2017.4074. 
  23. Mohammadi, M., Akrami, V. and Mohammadi-Ghazi, R. (2011), "Methods to improve infilled frame ductility", J. Struct. Eng., 137, 9. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000322. 
  24. Mohammadi, M. and Motovali Emami, S.M. (2019), "Multi-bay and pinned connection steel infilled frames; an experimental and numerical study", Eng. Struct., 188, 43-59. https://doi.org/10.1016/j.engstruct.2019.03.028. 
  25. Motovali Emami, S.M. and Mohammadi, M. (2020), "Effect of frame connection rigidity on the behavior of infilled steel frames", Earthq. Struct., 19, 227-241. https://doi.org/10.12989/eas.2020.19.4.227. 
  26. Nicola, T., Leandro, C., Guido, C. and Enrico, S. (2015), "Masonry infilled frame structures: State-of-the-art review of numerical modelling", Earthq. Struct., 8, 733-759. https://doi.org/10.12989/eas.2015.8.3.733. 
  27. Pashaie, M.R. and Mohammadi, M. (2021), "An extended multiple-strut model to estimate infill effects on multi-storey steel frames with different connection rigidities", Struct., 30, 710-734. https://doi.org/10.1016/j.istruc.2020.12.035. 
  28. Quayyum, S., Alam, M.S. and Rteil, A. (2013), "Seismic behavior of soft storey mid-rise steel frames with randomly distributed masonry infill", Steel Compos. Struct., 14, 523-545. https://doi.org/10.12989/scs.2013.14.6.523. 
  29. Sakr, M.A., Eladly, M.M., Khalifa, T. and El-Khoriby, S. (2019), "Cyclic behaviour of infilled steel frames with different beamto-column connection types", Steel Compos. Struct., 30(5), 443-456. https://doi.org/10.12989/scs.2019.30.5.443. 
  30. Salinas, D., Koutromanos, I. and Leon, R.T. (2022), "Nonlinear truss modeling method for masonry-infilled reinforced concrete frames", Eng. Struct., 262, 114329. https://doi.org/10.1016/j.engstruct.2022.114329. 
  31. Shan, S., Li, S. and Wang, S. (2019), "Effect of infill walls on mechanisms of steel frames against progressive collapse", J. Constr. Steel Res., 162, 105720. https://doi.org/10.1016/j.jcsr.2019.105720. 
  32. Shi, G., Shi, Y., Wang, Y. and Bradford, M.A. (2008), "Numerical simulation of steel pretensioned bolted end-plate connections of different types and details", Eng. Struct., 30(10), 2677-2686. https://doi.org/10.1016/j.engstruct.2008.02.013. 
  33. Shi, Y., Shi, G. and Wang, Y. (2007), "Experimental and theoretical analysis of the moment-rotation behaviour of stiffened extended end-plate connections", J. Constr. Steel Res., 63(9), 1279-1293. https://doi.org/10.1016/j.jcsr.2006.11.008. 
  34. Song, B.I., Giriunas, K.A. and Sezen, H. (2014), "Progressive collapse testing and analysis of a steel frame building", J. Constr. Steel Res., 94, 76-83. https://doi.org/10.1016/j.jcsr.2013.11.002. 
  35. Song, B.I. and Sezen, H. (2013), "Experimental and analytical progressive collapse assessment of a steel frame building", Eng. Struct., 56, 664-672. https://doi.org/10.1016/j.engstruct.2013.05.050. 
  36. Subramanian, K., Mini, K.M. and Florence, S.J.K. (2005), "Neural network based modeling of infilled steel frames", Struct. Eng. Mech., 21(5), 495-506. https://doi.org/10.12989/sem.2005.21.5.495. 
  37. Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2018.27.6.727. 
  38. Wang, M., Shi, Y., Wang, Y. and Shi, G. (2013), "Numerical study on seismic behaviors of steel frame end-plate connections", J. Constr. Steel Res., 90, 140-152. https://doi.org/10.1016/j.jcsr.2013.07.033. 
  39. Wu, J.R., Di Sarno, L., Freddi, F. and D'Aniello, M. (2022), "Modelling of masonry infills in existing steel moment-resisting frames: Nonlinear force-displacement relationship", Eng. Struct., 267, 114699. https://doi.org/10.1016/j.engstruct.2022.114699. 
  40. Xavier, F.B., Macorini, L., Izzuddin, B.A., Chisari, C., Gattesco, N., Noe, S. and Amadio, C. (2017), "Pushdown tests on masonry infilled frames for assessment of building robustness", J. Struct. Eng., 143(9), 04017088. https://doi.org/10.1061/(asce)st.1943-541x.0001777. 
  41. Yekrangnia, M. and Mohammadi, M. (2017), "A new strut model for solid masonry infills in steel frames", Eng. Struct., 135, 222-235. https://doi.org/10.1016/j.engstruct.2016.10.048. 
  42. Zhang, C., Ling, B., Huang, W., Deng, X., Ding, C., Gao, J. and Zhang, S. (2022), "Cyclic behavior of semi-rigid steel frame infilled with damping wall panels", J. Build. Eng., 51, 104238. https://doi.org/10.1016/j.jobe.2022.104238.