• Title/Summary/Keyword: H-Si(100)

Search Result 879, Processing Time 0.027 seconds

Synthesis of Al2O3/SiC Whisker (Al2O3/SiC Whisker원료 합성)

  • Chung, K.C.;Joo, K.;Chun, Y.S.;Orr, K.K.;Kim, E.H.;Lee, S.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.167-170
    • /
    • 1989
  • Al2O3/SiC composite-material was synthesized by the birth-spread mechanism through the carbothermal reduction reaction of SiO2 in Ha-Dong Kaolin with carbon powder under H2 gas atmosphere at 1300~140$0^{\circ}C$. Average diameter of synthesized SiC whiskers were 1${\mu}{\textrm}{m}$ and aspect ratio (c/a) was 10~100. Al2O3 particles and SiC whiskers were mixed homogeneously in the reacted pellet.

  • PDF

Surface analysis of a-$Si_{x}C_{1-x}$: H deposited by RF plasma-enhanced CVD

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Thin films of hydrogenated amorphous silicon carbide compounds ($a-Si_{x}C_{1-x}:H$) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane (SiH$_4$) and methane ($CH_4$) as the gas precursors at 1 Torr and at a low substrate temperature ($250^{\circ}C$). The gas flow rate was changed with the other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of $a-Si_{x}C_{1-x}:H$films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

Competitive Photochlorination Reactions of Silane, di-Chloro and tri-Chlorosilanes at 337.1 nm

  • Jung, Kyung-Hoon;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.242-246
    • /
    • 1987
  • The hydrogen abstraction reactions of $SiH_4, SiH_2Cl_2 \;and\; SiHCl_3$ by ground state chlorine atoms generated photochemically from chlorine molecules have been studied at temperatures between 15 and $100^{\circ}C.$ The absolute rates for the reactions have been obtained by a competition technique using ethane as a competitor. The rate expressions ($in cm^3/mol/s$) are found to conform to an Arrhenius rate law: $k_{SiH_4} = (7.98 {\pm} 0.42) {\times} 10^{13}$ exp $[-(1250 {\pm}20)/T].$ $k_{SiH_2Cl_2} = (2.25 {\pm} 0.12) {\times} 10^{15}$ exp[-(1010 ${\pm}$ 10)/T]. $k_{SiHCl_3} = (9.04 {\pm} 0.28) {\times} 10^{14}\; exp[-(1200 {\pm} 10)/T].$ The activation energies obtained from this study represent the same trend as with the carbon analogues, while this trend was not found with respect to the bond dissociation energies among silicon compound homologues. These anomalous behaviors were interpreted in terms of electronic effects and of the structural differences between these compounds.

A 45GHz $f_{T}\;and\;50GHz\;f_{max}$ SiGe BiCMOS Technology Development for Wireless Communication ICs (무선통신소자제작을 위한 45GHz $f_{T}$ 및 50GHZz $f_{max}$ SiGe BiCMOS 개발)

  • Hwang Seok-Hee;Cho Dae-Hyung;Park Kang-Wook;Yi Sang-Don;Kim Nam-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.1-8
    • /
    • 2005
  • A $0.35\mu$m SiGe BiCMOS fabrication process has been timely developed, which is aiming at wireless RF ICs development and fast growing SiGe RF market. With non-selective SiGe epilayer, SiGe HBTs in this process used trapezoidal Ge base profile for the enhanced AC performance via Ge induced bandgap niuoin. The characteristics of hFE 100, $f_{T}\;45GHz,\;F_{max}\;50GHz,\;NF_{min}\;0.8dB$ have been obtained by optimizing not only SiGe base profile but also RTA condition after emitter polysilicon deposition, which enables the SiGe technology competition against the worldwide cutting edge SiGe BiCMOS technology. In addition, the process incorporates the CMOS logic, which is fully compatible with $0.35\mu$m pure logic technology. High Q passive elements are also provided for high precision analog circuit designs, and their quality factors of W(1pF) and inductor(2nH) are 80, 12.5, respectively.

Synthetic Study of Zeolites from Some Glassy Rocks (II) : Dissolution Behavior of Perlite and Zeolite Synthesis in Alkaline Aqueous Solution (유리질 암석으로부터 제올라이트 합성에 관한 연구(Ⅱ) : 알칼리 용액에서 진주암의 용해 거동과 제올라이트의 합성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.61-71
    • /
    • 1992
  • Through the low-temperature(60-150${\circ}C$) hydrothermal treatment of perlite with the alkaline solution at various NaOH concentrations, the mode of volcanic glass alteration and resultant zeolite formation were investigated in a closed system. At a temperature of 80${\circ}C$ and alkalinities of pH range 8 to 12, corresponding to the natural environments of diagenetic zeolite formation, only weak dissolution of perlitic glass occurs without zeolite formation despite the residence time of 100 days. Activities of Si and Al increase progressively, as a consequence of increasing pH, whereas activity ratios of Si/Al decrease. Zeolites were synthesized from perlite in the alkaline solution at above 0.1M NaOH concentrations. Below the temperature of 100${\circ}C$ Na-P was mainly formed, whereas analcime was the dominant zeolite at the temperature range of 100-150${\circ}C$. During Na-P synthesis chabazite and Na-X were also formed as by-products in case of lower proportion of solution/sample(<10ml/g) and higher NaOH concentraion (>3M), respectively. The alteration modes of perlite in the zeolite synthesis reflect that the formation of synthetic zeolites occurs as an incongruent dissolution likely with the diagenetic formation of natural zeolites from volcanic glass. Considering much difference in reaction kinetics between natural and synthetic systems, however, the evaluated synthetic conditions in these experiments were not directly applicable to the natural diagenetic system.

  • PDF

Low Temperature Deposition a-SiNx:H Using ICP Source (ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가)

  • Kang, Sung-Chil;Lee, Dong-Hyeok;So, Hyun-Wook;Jang, Jin-Nyoung;Hong, Mun-Pyo;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.532-536
    • /
    • 2011
  • The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.

The Properties and Uniformity Change of Amorphous SiC:H Film Deposited using Remote PECVD System with Various Deposition Conditions (원거리 플라즈마 화학기상증착법을 사용하여 증착한 비정질 탄화규소 막의 증착조건에 따른 특성 및 증착 균일도 변화)

  • Cho, Sung-Hyuk;Choi, Yoo-Youl;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • a-SiC has been thought as an ideal candidate for conventional silicon at many applications. However, the uniformity problem of deposition has been a obstacle for conventional use of a-SiC:H films. a-SiC:H films were deposited on (100) silicon wafer by RPECVD system in various temperature. HMDS and $H_2$ gas were used as a precursor and a carrier gas, respectively. The flow rate of HMDS source and $C_2H_2$ dilution gas was fixed in order to study the carbon effect on the film stoichiometric and bonding properties. The plasma power varied from 200 to 400W. We used three types of source delivery line to control the uniformity and film properties of deposited film. We showed that the change of source delivery line has effect on the film uniformity of deposited film and this change of line did not affect on film properties. Also, the change of deposition conditions has effect on the film uniformity.

Surface analysis of a-$Si_xC_{1x}:H$ deposited by RF plasma-enhanced CVD (RF plasma-enhancd CVD 법에 의해 증착된 a-$Si_xC_{1x}:H$ 의 표면분석)

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.285-303
    • /
    • 1999
  • Thin films of hydrogenated amorphous silicon carbide compounds (a-SixC1x:H) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane(SiH4) and methane(CH4) as the gas precursors at 1 Torr and at low substrate temperature (25$0^{\circ}C$). The gas flow rate was changed with every other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of a-SixC1x:H films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

AFM fabrication of oxide patterns on 4H-SiC surface (4H-SiC 표면에서 AFM의 산화 패턴 제작)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.64-64
    • /
    • 2009
  • Atomic force microscopy (AFM) fabrication of oxide patterns is an attractive technique for nanoscale patterns and related device structures, SiC exhibits good performance in high-power, high-frequency, and high-temperature conditions that is comparable to the performance of Si. The AFM fabrication of oxide patterns on SiC is important for electronic applications. However, there has not been much reported investigations on oxidation of SiC using AFM. We achieved the local oxidation of 4H-SiC using the high loading force of ~100 nN, although the oxidation of SiC is generally difficult mainly due to the physical hardness and chemical inactivity. All the experiments were performed using atomic force microscopy (S.I.S. GmbH, Germany) with a Pt/Ir-coated Si tip at ~40% humidity and room temperature. The spring constant and resonance frequency of the tip were around ~3 N/m and ~70 kHz. We fabricated oxide patterns on n-type 4H-SiC ($\sim10^{19}/cm^3$) and n-type Si ($\sim1.9\times10^{16}/cm^3$). In summary, we demonstrated that the oxide patterns can be obtained over the electric field of ${\sim}\times10^7 V/cm$ and the high loading force using the tip as a cathode. The electric field transports the oxyanions (OH-) to the positively biased surface.

  • PDF

A Study on $CaO-SiO_2-H_2O$ System Hydrates Produced by Hydrothermal Reaction under High Pressure (高壓下의 水熱反應에 依한 $CaO-SiO_2-H_2O$ 系 硬化體에 關한 基礎的 硏究)

  • Lee, Hee-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.190-200
    • /
    • 1965
  • It is a fundamental study for the hardened bodies of $CaO-SiO_2-H_2O$ system to clear up various physical properties and structures of the products, using the Seosan quartz and $Ca(OH)_2$(C. P. grade) as raw materials. Various samples were obtained by varying $CaO/SiO_2$ mole ratio (0.3∼2.1) and hydrothermal conditions ($100∼220^{\circ}C$ and 2∼14hr.) within the given limit. It was found that tobermorite phase as hydrate is contained in the hardened bodies and that the development of crystal has a great influence on the strengths and other physical properties of hardened bodies.

  • PDF