DOI QR코드

DOI QR Code

Low Temperature Deposition a-SiNx:H Using ICP Source

ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가

  • Kang, Sung-Chil (Department of Control and Instrumentation Engineering, Korea University) ;
  • Lee, Dong-Hyeok (Department of Display and Semiconductor Physics Engineering, Korea University) ;
  • So, Hyun-Wook (Department of Display and Semiconductor Physics Engineering, Korea University) ;
  • Jang, Jin-Nyoung (Department of Display and Semiconductor Physics Engineering, Korea University) ;
  • Hong, Mun-Pyo (Department of Display and Semiconductor Physics Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
  • 강성칠 (고려대학교 제어계측공학과) ;
  • 이동혁 (고려대학교 디스플레이반도체물리학과) ;
  • 소현욱 (고려대학교 디스플레이반도체물리학과) ;
  • 장진녕 (고려대학교 디스플레이반도체물리학과) ;
  • 홍문표 (고려대학교 디스플레이반도체물리학과) ;
  • 권광호 (고려대학교 제어계측공학과)
  • Received : 2011.03.02
  • Accepted : 2011.06.20
  • Published : 2011.07.01

Abstract

The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.

Keywords

References

  1. J. Yota, J. Hander, and A. A. Saleh, J. Vac. Sci. Technol., A18 (2000).
  2. D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, J. Electro. Chem. Soc., 137, 614 (1990). https://doi.org/10.1149/1.2086517
  3. D. Murley, I. French, S. Deane, and R. Gibson. J. Non-Cryst. Solids., 198, 1058 (1996). https://doi.org/10.1016/0022-3093(96)00041-5
  4. W. B. Jackson, J. M. Marshall, and M. D. Moyer. Phys. Rev., B39, 2 (1989).
  5. C. V. Berkel and M. J. Powell. J. Non-Cryst. Soilds., 97, 903 (1987). https://doi.org/10.1016/0022-3093(87)90217-1
  6. M. J. Powell, IEEE Trans. Electron. Dev., 36, 2753 (1989). https://doi.org/10.1109/16.40933
  7. D. V. Tsu, G. Lucovsky, and M. J. Mantini, Phys. Rev., B33, 7069 (1986). https://doi.org/10.1103/PhysRevB.33.7069
  8. P. Li and W. W. Fan, Chem. Phy. Lett., 367, 645 (2003). https://doi.org/10.1016/S0009-2614(02)01793-1
  9. Y. B. Park and S. W. Rhee. J. Mater. Phys., 12, 515 (2001).
  10. H. Ohta, A. Nagashima, M. Hori, and T, Goto, J. Appl. Phys., 89 (2001).
  11. R. Wolf, K. Wandel, and B. Gruska. Surf. Coat. Technol., 142 (2001).