• Title/Summary/Keyword: ICP source

Search Result 212, Processing Time 0.03 seconds

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues (전기적 특성을 고려한 ICP Source 설계)

  • Lee, S.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.176-185
    • /
    • 2009
  • The realization and the performance of ICP source are strongly affected by its electrical impedance and the electric/magnetic field distribution. The ICP source impedance is determined by the antenna impedance and the plasma one. It is preferred to keep the imaginary impedance between -100 ohm to 100 ohm, since it should be avoided the high voltage formation on the antenna and abrupt impedance variation during the thin film process. The plasma uniformity is affected by the electric and magnetic field which is formed by the antenna current and voltage. The influence of azimuthal symmetry are shown by the electromagnetic simulation and the measurement result of plasma density. The radial uniformity can be controlled by locating the concentric antennas which have different diameters. The power distribution ratio and its control method are presented in the case of parallel antenna connections.

The Power Rating Design of Inductively Coupled Plasma Light Source and The Electrical Dependency Between Parameters (ICP 광원의 정격용량 설계 요소와 전기적 의존성)

  • Kim, Hyun-Il;Park, Dae-Hee;Chang, Hong-Soon;Baek, Soo-Hyun;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.453-457
    • /
    • 2008
  • We studied on the dependency of parameters which those were used to design a ballast of ICP light source. These parameters were derived from Barkhausen criterion equation about the oscillating condition of ballast. Comparing with a change of turns, we can suggest that a change of l is suitable to control a $I_p$ of an ICP light source. According to the Z-l equation, we can find an optimum rating power of ICP light sources corresponding to l.

GaN Etch Process System using Parallel Plasma Source for Micro LED Chip Fabrication (병렬 플라즈마 소스를 이용한 마이크로 LED 소자 제작용 GaN 식각 공정 시스템 개발)

  • Son, Boseong;Kong, Dae-Young;Lee, Young-Woong;Kim, Huijin;Park, Si-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • We developed an inductively coupled plasma (ICP) etcher for GaN etching using a parallel plasma electrode source with a multifunctional chuck matched to it in order for the low power consumption and low process cost in comparison with the conventional ICP system with a helical-type plasma electrode source. The optimization process condition using it for the micro light-emitting diode (µ-LED) chip fabrication was established, which is an ICP RF power of 300 W, a chuck power of 200 W, a BCl3/Cl2 gas ratio of 3:2. Under this condition, the mesa structure with the etch depth over 1 ㎛ and the etch angle over 75° and also with no etching residue was obtained for the µ-LED chip. The developed ICP showed the improved values on the process pressure, the etch selectivity, the etch depth uniformity, the etch angle profile and the substrate temperature uniformity in comparison with the commercial ICP. The µ-LED chip fabricated using the developed ICP showed the similar or improved characteristics in the L-I-V measurements compared with the one fabricated using the conventional ICP method

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

Comparison of E-ICP Effect for Large Area Plasma Source (대면적 플라즈마 소스에의 E-ICP 적용과 그 효과 비교)

  • 김진우;손민영;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.608-611
    • /
    • 2000
  • Large area plasma source becomes important as the substrate size increases. In this work, four inductively coupled plasma(ICP) unit sources are distributed 2${\times}$2 array. E-ICP concept is applied to the 2${\times}$2 array ICP and its effect is examined. Characteristics of the plasma are measured, and photoresist etching is performed with oxygen plasma. Good etching characteristic in terms of etching rate and uniformity can be obtained with E-ICP.

  • PDF

Dry Etching of GaAs in a Planar Inductively Coupled BCl3 Plasma (BCl3 평판형 유도결합 플라즈마를 이용한 GaAs 건식식각)

  • Lim, Wan-tea;Baek, In-kyoo;Jung, Pil-gu;Lee, Je-won;Cho, Guan-Sik;Lee, Joo-In;Cho, Kuk-San;Pearton, S.J.
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • We studied BCl$_3$ dry etching of GaAs in a planar inductively coupled plasma system. The investigated process parameters were planar ICP source power, chamber pressure, RIE chuck power and gas flow rate. The ICP source power was varied from 0 to 500 W. Chamber pressure, RIE chuck power and gas flow rate were controlled from 5 to 15 mTorr, 0 to 150 W and 10 to 40 sccm, respectively. We found that a process condition at 20 sccm $BCl_3$ 300 W ICP, 100 W RIE and 7.5 mTorr chamber pressure gave an excellent etch result. The etched GaAs feature depicted extremely smooth surface (RMS roughness < 1 nm), vertical sidewall, relatively fast etch rate (> $3000\AA$/min) and good selectivity to a photoresist (> 3 : 1). XPS study indicated a very clean surface of the material after dry etching of GaAs. We also noticed that our planar ICP source was successfully ignited both with and without RIE chuck power, which was generally not the case with a typical cylindrical ICP source, where assistance of RIE chuck power was required for turning on a plasma and maintaining it. It demonstrated that the planar ICP source could be a very versatile tool for advanced dry etching of damage-sensitive compound semiconductors.

Parametric study of inductively coupled plasma etching of GaN epitaxy layer (GaN epitaxy 층의 식각특성에 미치는 공정변수의 영향)

  • Choi, Byoung Su;Park, Hae Li;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • The effect of process parameters such as plasma composition, ICP (Inductively Coupled Plasma) source power and rf chuck power on the etch characteristics of GaN epitaxy layer was studied. $Cl_2/Ar$ ICP discharges showed higher etch rates than $SF_6/Ar$ discharges because of the higher volatility of $GaCl_x$ etch products than $GaF_x$ compounds. As the Ar ratio increases in the $Cl_2/Ar$ ICP discharges, the etch anisotropy was enhanced due to the improved physical component of the etching. For both plasma chemistries, the GaN etch rate increased continuously as both the ICP source power and rf chuck power increased, and a maximum etch rate of 251.9 nm/min was obtained at $13Cl_2/2Ar$, 750W ICP power, 400W rf chuck power and 10 mTorr condition.

Development of an Axially Viewed Inductively Coupled Plasma for Atomic Emission Spectrometry and Comparison between the Detection Limits of Lead (원자방출 분광분석을 위한 수평형 유도결합 플라스마의 개발과 납 검출한계 비교)

  • Cho, Sung Il;Han, Myung Sub;Lee, Sang Hwa;Lee, Joung Hae;Woo, Jin Chun
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.6
    • /
    • pp.292-298
    • /
    • 1997
  • An ICP(Inductively Coupled Plasma) emission spectrometer was developed with an axially viewed ICP source incorporated by a 5-turned induction coil and a torch, outer quartz tube of which was 50 mm longer than that used in conventional ICP/AES(Inductively Coupled Plasma Atomic Emission Spectrometry). The Optimization of the system has been performed in terms of the determination of signal-to-noise ratio and background intensity at various rf powers, sample flow rates, argon gas flow rates and cut-off gas flow rates. The spectro-analytical characteristics of the spectrum obtained between 200 and 500 nm was revealed to be similar compared with a vertically viewed ICP source. The detection limit of Pb(Ⅱ) at 220.35 nm was 11 ppb which was 5 times lower than that obtained with a vertically viewed ICP source.

  • PDF