• 제목/요약/키워드: H-Section Steel

검색결과 221건 처리시간 0.023초

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

중앙 보강재에 의한 철근콘크리트 기둥의 내진 강화에 관한 연구 (Study on Strengthening of Reinforced Concrete Columns by Central Element)

  • 노영곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.517-520
    • /
    • 1999
  • In this study, the problem of strengthening of reinforced concrete (RC) columns by a central steel section with minimum amount is taken up. For this purpose, RC columns with central reinforcing elements such as a steel bar, a steel H section and a steel pipe were taken up. To certify the effect of this way of reinforcing, experimental study using specimens of RC columns of shear span ratio of 2.5 was carried out. The variables which are considered to affect the behavior of RC columns subjected to axial load and cyclic shear load are the magnitude of axial load, tie ratio and main bar ratio. As the results of this study, the effect of a central reinforcing element for making higher the earthquake resistant properties of RC columns were observed.

  • PDF

상부플랜지를 감소시킨 합성보의 휨내력에 관한 실험적 연구 (An Experimental Study on Flexural Strength of Composite Beam with Reduced Top Flange of Steel)

  • 문찬일;정재훈;김진무;주경재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.153-160
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section usually is located the top flange of the steel I-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. The purpose of this investigation is to research flexural strength and behavior of the composite beams with reduced top flange of steel. Five specimens with H and inverted T steel section were tested. As the test results, comparison of the experimental to computed full-plastic moment, and variations of flexural strength with reduced top flange were analyzed.

  • PDF

신뢰성지수를 고려한 합성 뼈대구조물의 최적설계에 관한 연구 (Optimum Design of Composite Framed Structures Based Reliability Index)

  • 정영채;김종길
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.389-401
    • /
    • 2003
  • 본 연구의 목적은 H형강 단면과 콘크리트의 합성단면으로 구성된 보와 기둥의 합성 뼈대구조물에 대해 신뢰성지수를 고려한 최적 단면을 설계할 수 있는 알고리즘을 개발하는데 있다. 합성 뼈대구조물의 최적화 문제는 단면 치수를 설계변수로 취하고 목적함수와 제약조건을 형성한다. 목적함수는 구조물의 총 경비로 형성하고, 제약조건식은 단면응력과 허용응력의 신뢰성지수를 고려하여 유도한다. 합성 뼈대구조물의 단문을 최적화하는 알고리즘은 수정 Newton-Raphson 탐사법을 사용하는 SUMT기법을 사용한다. 본 연구에서 개발된 최적화 알고리즘은 1층 1경간 합성 뼈대구조물과 5층 1경간 합성 뼈대구조물의 수치예에 신뢰성지수(${\beta}=3.0$, ${\beta}=0.0$)를 고려한 합성 뼈대구조물 설계의 실용화를 위하여 적용된다. 제안된 알고리즘의 최적화 가능성과 적용성 그리고 수렴성 등을 살펴보기 위하여 수치결과들을 비교 분석한다.

H형강 플랜지 두께변화에 따른 구조용집성재 접합부의 탄소성거동 (Elasto-plastic behaviour of structural laminated timber joint by flange thickness of H beam)

  • 김순철;양일승
    • 한국강구조학회 논문집
    • /
    • 제18권3호
    • /
    • pp.385-393
    • /
    • 2006
  • 목구조의 효율적인 이용은 건설산업에 있어 자재생산에 따른 에너지의 대량소비 및 폐기물유발을 감소할 수 있어 친환경적인대응방안으로 주목받고 있다. 이러한 친환경적인 목재의 수요를 증대시키기 위해서는 중 대형 목구조를 필요로 하는데 기존의 단일부재 및 접합부로써 중 대형 목구조를 실현하는 데는 한계가 있다. 그러므로 중 대형 목구조의 가능성을 높이기 위해서는 구조용집성재의 사용 및 다른 재료를 병합한 효율적인 접합방법이 필요로 하게 된다. 본 연구는 중 대형 목구조용 2방향 라멘접합부 개발을 목표로 하여 H형강과 구조용집성재를 사용한 플랜지의 두께(None, 6mm, 9mm, 12mm)이며, 접합부의 휨 실험을 통해 강성, 강도, 구조용집성재의 응력분포, H형강 플랜지의 변형도 및 파괴형상을 파악하였다. 실험결과, H 형강의 플랜지 두께가 9mm, 12mmm인 실험체는 높은 강도와 우수한 변형능력을 발휘하였다. 또한 H 형강의 플랜지 두께가 9mm, 12mm인 실험체의 이력거동은 매우 크고 매우 높은 에너지 흡수능력을 가지고 있었다.

편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구 (Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads)

  • 유정한;김주우;양재근;강주원;이동우
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.453-461
    • /
    • 2014
  • 본 연구에서는 건축구조용 고성능강 HSA800의 건축구조부재로의 적용을 위한 연구로써, 용접 제작된 각형강관 및 H형강에 대해 단주편심압축 실험을 바탕으로 해석모델을 이용한 검증이 이루어졌다. 특히, 고성능강 조립단주의 유한요소해석을 이용한 변수연구와 P-M 상관관계로부터 현행 기준의 적용여부를 평가하고자 하였으며, 폭두께비와 축력비를 주요변수로 두었다. 변수모델의 P-M상관도 분석결과, 압축력에 대한 비세장단면은 모두 현행기준의 요구에서 크게 상회하는 결과를 얻었고 축력비가 낮을수록 휨강도비에 충분한 여유를 갖는 것을 확인하였다. 압축력에 대한 세장판 단면을 갖는 각형강관의 경우, 현행기준의 요구에 못 미치는 결과를 보였다.

H형(形) 강(鋼) 보의 횡좌굴(橫挫屈)에 관(關)한 연구(硏究) (A Study On Lateral Buckling Of H-Section Steel Beams)

  • 김석중
    • 산업기술연구
    • /
    • 제4권
    • /
    • pp.29-35
    • /
    • 1984
  • Buckling is a significant behavior to be considered whenever we design steel structures. In the case of H-shape beams, the lateral buckling occured by bending moment must be considered. Because of the lateral buckling of H-shape beams, the bending strength of the beams are determined by the lateral buckling stress instead of the allowable bending stress. Lateral buckling stress equation, consisting of two terms, i. e. ${\sigma}_{cr}({\nu},{\omega})={\sqrt{[{\sigma}_{cr}({\nu})]^2+[{\sigma}_{cr}({\omega})]^2}}$ has been using, but for the practical purpose of use the following equations are using two, i. e. ${\sigma}_{cr}({\nu})={\frac{0.65E}{{\ell}_h/A_f}}$, ${\sigma}_{cr}({\omega})={\frac{{\pi}^2E}{({\ell}_b/i_b)^2}}$. When we use the above equations, the results are different according to the shape of beam section, and they a re rather complex. In this study lateral buckling stress equation is derived, and the proposed formula$({\sigma}_{cr}(t))$ is compared with above mentioned two basic and practical equations. To verify the proposed formula experimentaly, 16H-shape beams which have different slender ratios arc tested by applying pure bending momet. Through the experiments the buckling behavior of H-shape beams is clarified, and the results shows that the proposed formula$({\sigma}_{cr}(t))$ is accurate enough for practical purpose.

  • PDF

Buckling Strength Increment of Curved Panels Due to Rotational Stiffness of Closed-Section Ribs Under Uniaxial Compression

  • Andico, Arriane Nicole P.;Park, Yong-Myung;Choi, Byung H.
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1363-1372
    • /
    • 2018
  • Recently, there have been studies about the increasing effect on the local plate buckling strength of flat plates when longitudinally stiffened with closed-section ribs and an approximate solution to quantitatively estimate these effects were suggested for flat plates. Since there are few studies to utilize such increasing effect on curved panels and a proper design method is not proposed, thus, this study aims to numerically evaluate such effect due to the rotational stiffness of closed-section ribs on curved panels and to propose an approximate method for estimating the buckling strength. Three-dimensional finite element models were set up using a general structural analysis program ABAQUS and a series of parametric numerical analyses were conducted in order to examine the variation of buckling stresses along with the rotational stiffness of closed-section ribs. By using a methodology that combine the strength increment factor due to the restraining effect by closed-section ribs and the buckling coefficient of the panel curvature, the approximate solutions for the estimation of buckling strength were suggested. The validity of the proposed methods was verified through a comparative study with the numerical analysis results.

Optimum design of parabolic steel box arches

  • Azad, Abul K.;Mohdaly, Hani M.M.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.169-180
    • /
    • 2000
  • An optimization procedure has been prescribed for the minimum weight design of symmetrical parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch which includes the optimum depth profile and the optimum lengths and areas of the required flange plates corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the entire span. For any other loading, the optimum value of h/L is less than 0.41.