• Title/Summary/Keyword: H파일

Search Result 300, Processing Time 0.034 seconds

Design of WiFi Video Bridge based Security & File-sharing for Smart Residential Gateway (스마트 레지덴셜 게이트웨이용 와이파이 비디오브리지의 보안 및 파일공유 설계)

  • Kim, C.M.;Oh, K.C.;Yoon, H.S.;Oh, K.H.;WHang, B.T.;Kang, M.G.;Seo, J.W.;Kim, H.S.;Park, Y.S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.188-190
    • /
    • 2014
  • 본 논문에서는 와이파이 802.11ac기반의 비디오 브리지(Video bridge)는 액세스 포인트 인 모바일 라우터와 비디오 브리지를 결합한 모바일 AP라우터가 보안이슈와 파일공유 방안을 제안하고자 한다.

  • PDF

Stereoscopic Video Display System Based on H.264/AVC (H.264/AVC 기반의 스테레오 영상 디스플레이 시스템)

  • Kim, Tae-June;Kim, Jee-Hong;Yun, Jung-Hwan;Bae, Byung-Kyu;Kim, Dong-Wook;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.450-458
    • /
    • 2008
  • In this paper, we propose a real-time stereoscopic display system based on H.264/AVC. We initially acquire stereo-view images from stereo web-cam using OpenCV library. The captured images are converted to YUV 4:2:0 format as a preprocess. The input files are encoded by stereo-encoder, which has a proposed estimation structure, with more than 30 fps. The encoded bitstream are decoded by stereo-decoder reconstructing left and right images. The reconstructed stereo images are postprocessed by stereoscopic image synthesis technique to offer users more realistic images with 3D effect. Experimental results show that the proposed system has better encoding efficiency compared with using a conventional stereo CODEC(coder and decoder) and operates with real-time processing and low complexity suitable for an application with a mobile environment.

Principles and Applications of Multi-Level H2O/CO2 Profile Measurement System (다중 수증기/이산화탄소 프로파일 관측 시스템의 원리와 활용)

  • Yoo, Jae-Ill;Lee, Dong-Ho;Hong, Jin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • The multi-level profile system is designed to measure the vertical profile of $H_2O$ and $CO_2$ concentrations in the surface layer to estimate the storage effects within the plant canopy. It is suitable for long-term experiments and can be used also in advection studies for estimating the spatial variability and vertical gradients in concentration. It enables the user to calculate vertical fluxes of water vapor, $CO_2$ and other trace gases using the surface layer similarity theory and to infer their sources or sinks. The profile system described in this report includes the following components: sampling system, calibration and flow control system, closed path infrared gas analyzer(IRGA), vacuum pump and a datalogger. The sampling system draws air from 8 inlets into the IRGA in a sequence, so that for 80 seconds air from all levels is measured. The calibration system, controlled by the datalogger, compensates for any deviations in the calibration of the IRGA by using gas sources with known concentrations. The datalogger switches the corresponding valves, measures the linearized voltages from the IRGA, calculates the concentrations for each monitoring level, performs statistical analysis and stores the final data. All critical components are mounted in an environmental enclosure and can operate with little maintenance over long periods of time. This report, as a practical manual, is designed to provide helpful information for those who are interested in using profile system to measure evapotranspiration and net ecosystem exchanges in complex terrain.

Forensic Analysis of HEIF Files on Android and Apple Devices (스마트폰에서 촬영된 HEIF 파일 특징 분석에 관한 연구)

  • Kwon, Youngjin;Bang, Sumin;Han, Jaehyeok;Lee, Sangjin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.421-428
    • /
    • 2021
  • The High Efficiency Image File Format (HEIF) is an MPEG-developed image format that utilizes the video codec H.265 to store still screens in a single image format. The iPhone has been using HEIF since 2017, and Android devices such as the Galaxy S10 have also supported the format since 2019. The format can provide images with good compression rates, but it has a complex internal structure and lacks significant compatibility between devices and software, making it not popular to replace commonly used JPEG (or JPG) files. However, despite the fact that many devices are already using HEIF, digital forensics research regarding it is lacking. This means that we can be exposed to the risk of missing potential evidence due to insufficient understanding of the information contained inside the file during digital forensics investigations. Therefore, in this paper, we analyze the HEIF formatted photo file taken on the iPhone and the motion photo file taken on the Galaxy to find out the information and features contained inside the file. We also investigate whether or not the software we tested support HEIF and present the requirement of forensic tools to analyze HEIF.

Evaluation of the Installation Mechanism of the Micropile with the Base Expansion Structure Using a Centrifuge Model Test (원심모형실험을 활용한 선단확장형 마이크로파일의 설치 메커니즘 평가)

  • Kim, Jae-Hyun;Kim, Seok-Jung;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.37-49
    • /
    • 2021
  • Micropiles are widely used in construction field to enhance bearing capacity and reduce settlement of existing foundation. It has various benefits such as low construction expense, simple installation process, and small construction equipment. Recently, new microple equipped with the base expansion structure at the end has been developed to improve the foundation bearing capacity. The improvement of load capacity can be conceptually achieved by expanding the base expansion structure when a load is applied to the micropile. However, the expansion mechanism of the base expansion structure and the improvement of load capacity of the micropile were not yet experimentally validated. Therefore, in this study, a series of centrifuge model tests was performed to evaluate the effect of the base expansion structure on the improvement of load capacity. Two types of soil, sand and weathered rock, were prepared and the loading tests were performed using the real micropile with the base expansion structure. During the tests, the earth pressures surrounding the base expansion structure were monitored. As a result, when a load of 30 kN was applied to the micropile, the increase in the ratio of the horizontal to vertical pressure increment (∆σh/∆σ𝜈) ranged from 0.4 to 0.58 in sand and ∆σh/∆σ𝜈 = 0.19 in weathered rock, respectively. Therefore, it can be concluded that the increase in the horizontal earth pressure adjacent to the base expansion structure will improve the bearing capacity of the micropile.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Design and Implementation of the Flash File System that Maintains Metadata in Non-Volatile RAM (메타데이타를 비휘발성 램에 유지하는 플래시 파일시스템의 설계 및 구현)

  • Doh, In-Hwan;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.2
    • /
    • pp.94-101
    • /
    • 2008
  • Non-volatile RAM (NVRAM) is a form of next-generation memory that has both characteristics of nonvolatility and byte addressability each of which can be found in nonvolatile storage and RAM, respectively. The advent of NVRAM may possibly bring about drastic changes to the system software landscape. When NVRAM is efficiently exploited in the system software layer, we expect that the system performance can be significantly improved. In this regards, we attempt to develop a new Flash file system, named MiNVFS (Metadata in NVram File System). MiNVFS maintains all the metadata in NVRAM, while storing all file data in Flash memory. In this paper, we present quantitative experimental results that show how much performance gains can be possible by exploiting NVRAM. Compared to YAFFS, a typical Flash file system, we show that MiNVFS requires only minimal time for mounting. MiNVFS outperforms YAFFS by an average of around 400% in terms of the total execution time for the realistic workloads that we considered.