• Title/Summary/Keyword: H2 production

Search Result 697, Processing Time 0.027 seconds

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Hydrogen Production from Photo Splitting of Water Using the Ga-incorporated TiO2s Prepared by a Solvothermal Method and Their Characteristics

  • Chae, Jin-Ho;Lee, Ju-Hyun;Jeong, Jong-Hwa;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.302-308
    • /
    • 2009
  • This study investigated the production of hydrogen over Ga (1.0, 2.0, and 5.0 mol%)-$TiO_2$ photocatalysts prepared by a solvothermal method. The absorption band was slightly blue-shifted upon the incorporation of the gallium ions, but the intensity of the photoluminescence (PL) curves of Ga-incorporated $TiO_2$s was distinguishably smaller, with the smallest case being the 2.0 mol% Ga-$TiO_2$, which was related to the recombination between the excited electrons and holes. $H_2$ evolution from photo splitting of water over Ga-incorporated $TiO_2$ in the liquid system was enhanced, compared to that over pure $TiO_2$; particularly, the production of 5.6 mL of $H_2$ gas after 8 h when 1.5 g of the 2.0 mol% Ga-incorporated $TiO_2$ was used.

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC (NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석)

  • Inhye Kim;Jeongjae Oh;Taesung Kim;Minsuk Im;Sunghyun Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.225-232
    • /
    • 2024
  • The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Synthesis of a small molecular cage consisting of three aminomethyl pyrroles and its selective fluoride recognition

  • Nam Jung, Heo;Hye Jin, Han;Jaewon, Choi;Sung Kuk, Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • A small cage-like molecule (2) composed of three aminomethyl pyrroles and two hexa-substituted benzenes has been prepared by reduction of its iminopyrrole analogue (1) using NaBH4. It was revealed by 1H NMR spectroscopic analyses that cage molecule 2 strongly binds the fluoride anion in polar DMSO-d6 relative to CDCl3. Compared to that of compound 1, the lowered affinity of 2 for the fluoride anion is attributable to its increased electron density resulting from the production of thesecondary amine groups.

Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries (블랙초크베리 분획물로부터의 주름억제 효과에 대한 작용기전)

  • Choi, Eun-Young;Kim, Eun-Hee;Lee, Jae-Bong;Do, Eun-Ju;Kim, Sang-Jin;Kim, Se-Hyeon;Park, Jeong-Yeol;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.34-41
    • /
    • 2016
  • Black chokeberries (scientific name Aronia melanocarpa) have been reported to have major effects due to anti-oxidant, anti-inflammatory, and anti-cancer capabilities. In this study, we investigated the anti- wrinkle effects of A. melanocarpa, including collagenase inhibition effects and their molecular biological mechanisms, such as oxidative stress-induced matrix metalloproteinase (MMP), mitogen-activated protein (MAP) kinase, and activator protein (AP)-1 expression and/or phosphorylation. In collagenase inhibition activity, the ethyl acetate fraction of black chokeberry (AE) was 77.2% at a concentration of 500 μg/ml, which was a significant result compared to that of Epigallocatechin gallate (positive control, 83.9% in 500 μg/ml). In the reactive oxygen species (ROS) assay, the AE produced 78% of ROS in 10 μg/ml and 70% of ROS in 75 μg/ml, which was a much lower percentage than the ROS production of H2O2-induced CCRF S-180II cells. In the MTT assay, cell viability was increased dose-dependently with AE in H2O2-induced cells. In protein expression by western blot assay, the AE suppressed the expression and phosphorylation of MMPs (MMP-1, -3, -9), MAPK (ERK, JNK, and p38), and AP-1 (c-Fos and c-Jun), and expressed the pro-collagen type I in H2O2-induced cells. These results suggest that black chokeberries have anti-wrinkle and collagen-production effects, and they may be used in applications for material development in the functional food and cosmetic industries.

In-feed organic and inorganic manganese supplementation on broiler performance and physiological responses

  • de Carvalho, Bruno Reis;Ferreira Junior, Helvio da Cruz;Viana, Gabriel da Silva;Alves, Warley Junior;Muniz, Jorge Cunha Lima;Rostagno, Horacio Santiago;Pettigrew, James Eugene;Hannas, Melissa Izabel
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1811-1821
    • /
    • 2021
  • Objective: A trial was conducted to investigate the effects of supplemental levels of Mn provided by organic and inorganic trace mineral supplements on growth, tissue mineralization, mineral balance, and antioxidant status of growing broiler chicks. Methods: A total of 500 male chicks (8-d-old) were used in 10-day feeding trial, with 10 treatments and 10 replicates of 5 chicks per treatment. A 2×5 factorial design was used where supplemental Mn levels (0, 25, 50, 75, and 100 mg Mn/kg diet) were provided as MnSO4·H2O or MnPro. When Mn was supplied as MnPro, supplements of zinc, copper, iron, and selenium were supplied as organic minerals, whereas in MnSO4·H2O supplemented diets, inorganic salts were used as sources of other trace minerals. Performance data were fitted to a linearbroken line regression model to estimate the optimal supplemental Mn levels. Results: Manganese supplementation improved body weight, average daily gain (ADG) and feed conversion ratio (FCR) compared with chicks fed diets not supplemented with Mn. Manganese in liver, breast muscle, and tibia were greatest at 50, 75, and 100 mg supplemental Mn/kg diet, respectively. Higher activities of glutathione peroxidase and superoxide dismutase (total-SOD) were found in both liver and breast muscle of chicks fed diets supplemented with inorganic minerals. In chicks fed MnSO4·H2O, ADG, FCR, Mn balance, and concentration in liver were optimized at 59.8, 74.3, 20.6, and 43.1 mg supplemental Mn/kg diet, respectively. In MnPro fed chicks, ADG, FCR, Mn balance, and concentration in liver and breast were optimized at 20.6, 38.0, 16.6, 33.5, and 62.3 mg supplemental Mn/kg, respectively. Conclusion: Lower levels of organic Mn were required by growing chicks for performance optimization compared to inorganic Mn. Based on the FCR, the ideal supplemental levels of organic and inorganic Mn in chick feeds were 38.0 and 74.3 mg Mn/kg diet, respectively.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.