DOI QR코드

DOI QR Code

Analysis of Gas Emissions and Power Generation for Co-firing Ratios of NG, NH3, and H2 Based on NGCC

NGCC 기반 천연가스, 암모니아, 수소 혼소 발전 비율에 따른 CO2와 NOx 배출량 및 전력 생산량 분석

  • Inhye Kim (School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University) ;
  • Jeongjae Oh (School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University) ;
  • Taesung Kim (School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University) ;
  • Minsuk Im (School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University) ;
  • Sunghyun Cho (School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University)
  • 김인혜 (전북대학교 반도체.화학공학부) ;
  • 오정재 (전북대학교 반도체.화학공학부) ;
  • 김태성 (전북대학교 반도체.화학공학부) ;
  • 임민석 (전북대학교 반도체.화학공학부) ;
  • 조성현 (전북대학교 반도체.화학공학부)
  • Received : 2024.01.23
  • Accepted : 2024.06.12
  • Published : 2024.08.01

Abstract

The reduction of CO2 emissions in the energy production sector, which accounts for 86.8% of total greenhouse gas emissions, is important to achieve carbon-neutrality. At present, 60% of total power generation in South Korea is coal and natural gas. Replacing fossil fuel with renewable energy such as wind and solar has disadvantages of unstable energy supply and high costs. Therefore, this study was conducted through the co-firing of natural gas, ammonia and hydrogen utilizing the natural gas combined cycle process. The results demonstrated reduction in CO2 emissions and 34%~238% of the power production compared to using only natural gas. Case studies on mass fractions of natural gas, ammonia and hydrogen indicated that power production and NOx emissions were inversely proportional to the ammonia ratio and directly proportional to the hydrogen ratio. This study provides guidelines for the use of various fuel mixtures and economic analysis in co-firing power generation.

탄소 중립 사회로의 전환을 위해 전체 온실가스 배출량의 86.8%를 차지하는 에너지 생산 부문에서의 이산화탄소 배출량 감축이 필요하다. 현재 우리나라는 총 발전량의 60%를 석탄과 천연가스에 의존하고 있으며 이를 풍력, 태양광 등의 재생에너지로 대체하는 방법은 에너지 수급이 불안정하고 비용이 높다는 단점이 있다. 이를 해결하기 위해 본 연구에서는 기존에 사용되고 있는 NGCC(Natural Gas Combined Cycle) 공정을 기반으로 천연가스, 암모니아, 수소를 혼합하여 연소한다는 해결책을 제시하였다. 시뮬레이션을 수행한 결과, 이산화탄소 배출량을 효과적으로 줄일 수 있었으며 천연가스만을 연료로 이용해 얻은 전력량과 비교하였을 때 34%~238%의 전력을 얻었다. 천연가스, 암모니아, 수소의 질량분율에 대한 사례연구를 수행한 결과, 암모니아 비율이 증가할수록 발전량과 NOx 배출량은 감소하였고 수소비율이 증가할수록 발전량과 NOx 배출량은 증가하였다. 본 연구는 추후 다양한 혼합 연료의 조합 및 경제성 평가 등 혼합 연료 발전 분야의 가이드라인이 될 수 있을 것이다.

Keywords

References

  1. Mohajan, H., "Greenhouse Gas Emissions Increase Global Warming," International Journal of Economic and Political Integration, 1(2), 21-34(2011).
  2. Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C.B., Frieler, K., Knutti, R., Frame, D. J. and Allen, M. R., "Greenhousegas Emission Targets for Limiting Global Warming to 2 ℃, Nature, 458(7242), 1158-1162(2009).
  3. Jomekian, A., Bazooyar, B., "Activated Carbon from Municipal Waste for Enhanced CO2/CH4 Membrane Separation: Experimental, Modeling and Simulation, Korean J. Chem. Eng., 40(9), 2102-2118(2023).
  4. Rashidi, H., Azimi, H. and Rasouli, P., "Carbon Dioxide Absorption by Ammonia-promoted Aqueous Triethanolamine Solution in a Packed Bed," Korean J. Chem. Eng., 40(9), 2282-2292(2023).
  5. Azizi, N., Jahanmahin, O., Homayoon, R., Khajouei, M., "A New Ternary Mixed-matrix Membrane (PEBAX/PEG/MgO) to Enhance CO2/CH4 and CO2/N2 Separation Efficiency," orean J. Chem. Eng., 40(6), 1457-1473(2023).
  6. Wang, J., Lv, X., Huang, L., Li, L., Li, X. and Zhang, J., "Construction of Amphiphilic Networks in Blend Membranes for CO2 Separation," Korean J. Chem. Eng., 40(1), 175-184(2023).
  7. Verma, S., Bhagat, P., Gahlyan, S., Rani, M., Kumar, N., Malik, R. K., Lee, Y. and Maken, S., "Thermophysical Properties of Nisopropyl-2-propanamine+alkanol (C1-C3) Mixtures as Absorbents for Carbon Dioxide Capture," Korean J. Chem. Eng., 40(9), 2293-2302(2023).
  8. Lee, Z. H., Sethupathi, S., Lee, K. T., Bhatia, S. and Mohamed, A. R., "An Overview on Global Warming in Southeast Asia: CO2 Emission Status, Efforts Done, and Barriers," Renew. Sust. Energ., 28, 71-81(2013).
  9. Cho, S., Kim, M., Lee, J., Han, A., Na, J. and Moon, I., "Multiobjective Optimization of Explosive Waste Treatment Process Considering Environment via Bayesian Active Learning," Eng Appl Artif Intell, 117, 105463(2023).
  10. Cho, S., Lim, J., Cho, H., Yoo, Y., Kang, D. and Kim, J., "Novel Process Design of Desalination Wastewater Recovery for CO2 and SOX Utilization," Chem. Eng. J., 433, 133602(2022).
  11. Cho, S., Kang, D., Kwon, J. S. Il, Kim, M., Cho, H., Moon, I. and Kim, J., "A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration," Mathematics., 9(17), 2174(2021).
  12. Park, S., Shin, Y., Jeong, E. and Han, M., "Techno-economic Analysis of Green and Blue Hybrid Processes for Ammonia Production," Korean J. Chem. Eng., 40(11), 2657-2670(2023).
  13. Kobayashi, H., Hayakawa, A., Somarathne, K. D. K. A. and Okafor, E. C., "Science and Technology of Ammonia Combustion," Proc. Combust. Inst., 37(1), 109-133(2019).
  14. Lee, H., Woo, Y. and Lee, M. J., "The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality - Part II R&D Trends and Technical Feasibility Analysis," Journal of The Korean Society of Combustion, 26(1), 84-106(2021).
  15. Gomez-Garcia, M. A., Pitchon, V. and Kiennemann, A., "Pollution by Nitrogen Oxides: An Approach to NOx Abatement by Using Sorbing Catalytic Materials," Environment International, 31(3), 445-467(2005).
  16. Lee, G., Lee, Y., Kim, Y.-J., Han, B., Kim, S. B., Park, I., Lee, G., Park, H., Hong, K.-J. and Kim, J., "Simultaneous Removal of NOx and SOx with Wet Scrubber using CaCO 3-based KI Absorbent," Journal of Energy & Climate Change, 18(1), 50-60(2023).
  17. Jung, Y. J., Kim, B. S., Jeong, B., Kim, H. D., Won, J. M., Cha, K. and Cha, J. S., "Thermal Regeneration Characteristics of Titanium Isopropoxide-modified TiO2 for the Removal of Environmentally Hazardous NOx in Iron Ore Sintering Process," Korean J. Chem. Eng., 40(4), 714-721(2023).
  18. Kim, D., "Review on the Development Trend of Hydrogen Gas Turbine Combustion Technology," Journal of The Korean Society of Combustion, 24(4), 1-10(2019).
  19. Shin, Y. and Cho, E.-S., "Numerical Study on H2 Enriched NG Lean Premixed Combustion," Journal of The Korean Society of Combustion, 26(1), 51-58(2021).
  20. Armaroli, N. and Balzani, V., "The Hydrogen Issue," ChemSusChem, 4(1), 21-36(2011).
  21. Lee, H., Lim, J. and Kim, J., "Novel Lithium Production Process Using Desalination Wastewater and Waste Heat From Natural Gas Combined Cycle," Energy Convers Manag, 292, 117396(2023).
  22. Yan, J. Y., Handbook of Clean Energy System, Vol. 5, John Wiley & Sons Ltd, Chichester, U.K(2015).
  23. Darrow, K., Tidball, R., Wang, J. and Hampson, A., "Catalog of CHP Technologies," U.S. Environmental Protection Agency CHP Partnership (2014).
  24. De Giorgi, M. G., Sciolti, A. and Ficarella, A., "Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames," Energies, 7(1), 477-497(2014).
  25. Shin, K., Cho, H., Shim, S. and Jee, S., "Shock Tube and Modeling Study of the Formation and the Reduction of Nitrogen Oxides; Ammonia Oxidation," Journal of the Korean Society of Combustion, 4(1), 59-65(1999).
  26. Berwal, P., Shawnam, Kumar, S., "Laminar Burning Velocity Measurement of CH4/H2/NH3-air Premixed Flames at High Mixture Temperatures," Fuel. 331, 125809(2023).
  27. Yasiry, A., Wang, J., Zhang, L., Abdulraheem, A. A. A., Cai, X. and Huang, Z., "An Experimental Study on H2/NH3/CH4-air Laminar Propagating Spherical Flames at Elevated Pressure and Oxygen Enrichment," Int J Hydrogen Energy. 58, 28-39(2024).
  28. Li, R., Konnov, A. A., He, G., Qin, F. and Zhang, D., "Chemical Mechanism Development and Reduction for Combustion of NH3/H2/CH4 Mixtures," Fuel. 257, 116059(2019).
  29. Wang, S., Wang, Z. and Roberts, W. L., "Measurements and Simulations on Effects of Elevated Pressure and Strain Rate on NOx Emissions in Laminar Premixed NH3/CH4/air and NH3/H2/air Flames," Fuel. 357, 130036(2024).
  30. The Engineering ToolBox, Optimal Combustion Processes - Fuel vs. Excess Air, Available at https://www.engineeringtoolbox.com/fuels-combustion-efficiency-d_167.html, (2003).
  31. The Engineering ToolBox, Combustion Efficiency and Excess Air, Available at https://www.engineeringtoolbox.com/boiler-combustion-efficiency-d_271.html, (2003).
  32. Li, B., Sun, S., Zhang, L., Feng, D., Zhao, Y., Wang, P., Wu, J., Qiu, P., Zhang, F. and Qin, Y., "System Modification and Thermal Efficiency Study on the Semi-closed Cycle of Supercritical Carbon Dioxide," Energy Convers Manag. 241, 114272(2021).
  33. Habib, M., Esquino, A. M., Hughes, R., Soepyan, F. B., Nemetz, L. R., Zhang, Z., Haque, M. E., Luebke, D. R., Lipscomb, G. G., Matuszewski, M. S., Bhattacharyya, D. and Hornbostel, K. M., "Flexible Carbon Capture Using MOF Fixed Bed Adsorbers at an NGCC Plant," Carbon Capture Science and Technology. 10, 100170(2024)
  34. Ishihara, S., Zhang, J. and Ito, T., "Numerical Calculation with Detailed Chemistry of Effect of Ammonia co-firing on NO Emissions in a Coal-fired Boiler," Fuel. 266, 116924(2020).
  35. Ishihara, S., Zhang, J. and Ito, T., "Numerical Calculation with Detailed Chemistry on Ammonia co-firing in a Coal-fired Boiler: Effect of Ammonia co-firing Ratio on NO Emissions," Fuel. 274, 117742(2020).
  36. Ahmad, A. H., Darmanto, P. S. and Juangsa, F. B., "Thermodynamic Analysis of Ammonia co-firing for Low-rank Coal-fired Power Plant," International Journal of Sustainable Energy. 42, 527-544 (2023).
  37. Mutlu, O. C. and Zeng, T., "Challenges and Opportunities of Modeling Biomass Gasification in Aspen Plus: A Review," Chem Eng Technol. 43, 1674-1689(2020).
  38. Ahmad, A. H., Darmanto, P. S. and Juangsa, F. B., "Thermodynamic Study on Decarbonization of Combined Cycle Power Plant," Journal of Engineering and Technological Sciences. 55, 613-626(2023).
  39. Lee, J., Jung, M., Kwon, Y., Lee, G. and Shon, B., "Simulation of the Flue Gas Treatment Processes of An Industrial-waste Incinerator Using Aspen Plus," Journal of the Korea Academia-Industrial Cooperation Society. 10, 3246-3252(2009).
  40. Lee, S., The hybrid SNCR/SCR optimization for NOx removal of steam boiler in petrochemical process, (2023).
  41. Rao, A., Liu, Y. and Ma, F., "Numerical Simulation of Nitric Oxide (NO) Emission for HCNG Fueled SI Engine by Zeldovich', Prompt (HCN) and Nitrous Oxide (N2O) Mechanisms Along with the Error Reduction Novel Sub-models and Their Classification Through Machine Learning Algorithms," Fuel, 333, 126320(2023).
  42. Bayramoglu, K., Bahlekeh, A. and Masera, K., "Numerical Investigation of the Hydrogen, Ammonia and Methane Fuel Blends on the Combustion Emissions and Performance," Int. J. Hydrogen Energy, 48, 39586-39598(2023).
  43. Li, J., Huang, H., Kobayashi, N., He, Z. and Nagai, Y., "Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOx Formation," Int. J. Energy. Res., 38, 1214-1223 (2014).
  44. Harper, J., Cloyd, S., Pigon, T., Thomas, B., Wilson, J., Johnson, E. and Noble, D. R., Hydrogen Co-Firing Demonstration at Georgia Power's Plant mcdonough: M501G Gas Turbine, Turbomachinery Technical Conference and Exposition, June, USA(2023).