• Title/Summary/Keyword: H/sub ∞/ control

Search Result 793, Processing Time 0.03 seconds

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.

Hardware Design Useing the SVC (SVC를 이용한 하드웨어 설계)

  • Lee, Jung-Sik;Gil, Dea-Nam;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1029-1030
    • /
    • 2008
  • The Scalable Video Coding(SVC) extention of H.264/AVC standard. SVC based temporal, spatial, snd qualty scalability of video bit streams. In this paper, we will develop C-model program and hardware circuits for the chip design of the SVC decoder. In order to acquire the flexibility of the circuit design and reliability of the hardware system development. In these development, we utilize the results of the C-model program to achieve the independencies of each sub-blocks and check the efficiencies of the circuit design results.

  • PDF

The Effects of Music and Science Integrated Activities Using Instruments on the Musical Concept and Science Inquiry Process Skill (악기를 활용한 음악.과학 통합활동이 유아의 음악적 개념 및 과학적 과정기술에 미치는 영향)

  • Lee, Jeong-Hwa;Han, Hee-Seung
    • Korean Journal of Child Studies
    • /
    • v.31 no.1
    • /
    • pp.283-300
    • /
    • 2010
  • This paper investigated the effect of music and science integrated activities using instruments designed to test both musical concept and science inquiry process skills of children. The subjects of this study consisted of two classes of children aged 5 at H Kindergarten in Busan city. This study involved a class of 31 children using a music and science integrated curriculum as the experimental group and another class of 32 children using a traditional music and science curriculum as the control group. The integrated activities were used 12 times over a 6-week period. A test was taken to evaluate the effects of the integrated activities on the children's understanding on seven sub-categories of musical concepts and six sub-categories of science inquiry process skills. The results were that the experimental group showed significantly higher improvements in all subcategories of musical concept and science inquiry process skills, compared to the control group. Based on these results, we concluded that these integrated activities were effective in the development of both musical concepts and the science inquiry process skills of children.

Effect of Microstructure Control of High-Strength Steel on Hydrogen Diffusivity, Trap Activation Energy, and Cracking Resistance in Sour Environments (고강도강의 미세조직 제어가 수소확산계수, 트랩 활성화에너지 및 Sour 환경 내 균열 저항성에 미치는 영향)

  • Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.131-136
    • /
    • 2023
  • The aim of this study was to investigate effects of microstructure control on hydrogen diffusivity, trap activation energy, and cracking behaviors of high-strength steel using a range of experimental techniques. Results of this study showed that susceptibility to hydrogen induced cracking (HIC) was significantly associated with hydrogen diffusivity and trap activation energy, which were primarily influenced by the microstructure. On the other hand, microstructural modifications had no significant impact on electrochemical polarization behavior on the surface at an early corrosion stage. To ensure high resistance to HIC of the steel, it is recommended to increase the cooling rate during normalizing to avoid formation of banded pearlite in the microstructure. However, it is also essential to establish optimal heat treatment conditions to ensure that proportions of bainite, retained austenite (RA), and martensite-austenite (MA) constituents are not too high. Additionally, post-heat treatment at below A1 temperature is desired to decompose locally distributed RA and MA constituents.

Clean Room Structure, Air Conditioning and Contamination Control Systems in the Semiconductor Fabrication Process (반도체 웨이퍼 제조공정 클린룸 구조, 공기조화 및 오염제어시스템)

  • Choi, Kwang-Min;Lee, Ji-Eun;Cho, Kwi-Young;Kim, Kwan-Sick;Cho, Soo-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.202-210
    • /
    • 2015
  • Objectives: The purpose of this study was to examine clean room(C/R) structure, air conditioning and contamination control systems and to provide basic information for identifying a correlation between the semiconductor work environment and workers' disease. Methods: This study was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. The C/R structure and air conditioning method were investigated using basic engineering data from documentation for C/R construction. Furthermore, contamination parameters such as airborne particles, temperature, humidity, acids, ammonia, organic compounds, and vibration in the C/R were based on the International Technology Roadmap for Semiconductors(ITRS). The properties of contamination control systems and the current status of monitoring of various contaminants in the C/R were investigated. Results: 200 mm and 300 mm wafer fabrication facilities were divided into fab(C/R) and sub fab(Plenum), and fab, clean sub fab and facility sub fab, respectively. Fresh air(FA) is supplied in the plenum or clean sub fab by the outdoor air handling unit system which purifies outdoor air. FA supply or contaminated indoor air ventilation rates in the 200 mm and 300 mm wafer fabrication facilities are approximately 10-25%. Furthermore, semiconductor clean rooms strictly controlled airborne particles(${\leq}1,000{\sharp}/ft^3$), temperature($23{\pm}0.5^{\circ}C$), humidity($45{\pm}5%$), air velocity(0.4 m/s), air change(60-80 cycles/hr), vibration(${\leq}1cm/s^2$), and differential pressure(atmospheric pressure$+1.0-2.5mmH_2O$) through air handling and contamination control systems. In addition, acids, alkali and ozone are managed at less than internal criteria by chemical filters. Conclusions: Semiconductor clean rooms can be a pleasant environment for workers as well as semiconductor devices. However, based on the precautionary principle, it may be necessary to continuously improve semiconductor processes and the work environment.

Selection of Native Ground Cover Plants for Sod Culture in an Organic Apple Orchard (유기농 사과과원에서 초생재배를 위한 자생지피식물의 선발)

  • Heo, Jae-Yun;Park, Young-Sik;Um, Nam-Yong;Park, Sung-Min
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.641-647
    • /
    • 2015
  • This study was conducted to select native ground cover plants for sod culture in an organic apple orchard by estimating the effect of three native ground cover plants, Glechoma hederacea, Thymus magnus, and Ixeris stolonifera, on the soil coverage, time-periodic weed occurrence, fruit characteristics, and soil chemical properties. The plant height of G. hederace, T. magnus and I. stolonifera were 15.0 ㎝, 13.4 ㎝ and 7.2 ㎝, respectively. The dry weight of G. hederace, T. magnus and I. stolonifera were 463 ㎏/10a, 247 ㎏/10a, and 255 ㎏/10a, respectively. The plant height and dry weight of G. hederacea were higher than in the other species. T. magnus and I. stolonifera having relatively lower soil cover rate during their life cycle produced a lot of weeds in the orchard as compared with the control. In contrast, G. hederacea showed 100 percentage of ground cover in the first year, and maintained high percentage of ground cover in the growing season of ‘Tsugaru’ apple for another 2 years. When the soil was covered with G. hederacea in the orchard for 3 years, the amount of weed was only 114 ㎏/10a and number of weeding was also reduced about 33% compared with control as well as the other species. There were no differences in the tree growth and fruit characteristics between the native ground cover plants and the control; however, positive effects of native ground cover plants on soil chemical properties were found. In G. hederacea, available P2O4content in soils remarkably increased and was a significant difference among native species. In addition, cation (Ca, Mg and K) content in soils increased by 39% in Ca, 6% in Mg, and 11% in K at G. hederacea compared with control. These results suggest that G. hederacea could be advantageous in terms of reducing the amount of herbicide applied and the labor required for weed control, and controlling soil chemical properties; therefore, it is a good candidate for sod culture in an organic apple orchard.

Evaluation of Phosphorus Acid Treatment as a Growth Stimulant for Red pepper (Capsicum annuum L.), Cucumber (Cucumis sativus L.), and Kimchi cabbage (Brassica campestris L. ssp. pekinensis) in the Bed Soil Environment (상토 환경에서 고추(Capsicum annuum L.), 오이(Cucumis sativus L.) 및 배추(Brassica campestris L. ssp. pekinensis)에 대한 생장촉진제로서 아인산 처리의 평가)

  • Kwon, Sang-Moon;Lee, Ye-Eun;Park, Young-Min;Kim, Deok-Won;Park, Ji-Su;Oh, Eun-Ji;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • This study was conducted to evaluate the effect of phosphorus acid (H3PO3) addition to the horticultural bed soil on the initial growth of red pepper (Capsicum annuum L. cv.), cucumber (Cucumis sativus L. cv.), and kimchi cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr. cv.). The stem heights of red pepper and cucumber were 46.1% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the untreated (control). Further, the stem diameter of pepper and cucumber were 48.7% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the control. In addition, the number of kimchi cabbage leaves was 47.5% greater in the 50 mg/L of phosphorus acid treatment than the control. The dry weights of red pepper, cucumber and kimchi cabbage were 72.9%, 16.5%, and 30.4% heavier in the 50 mg/L than the control, respectively. Cations (K, Ca, and Mg) and total phosphorus (T - P) were quantitatively analyzed for these three horticultural crops. The concentrations of K, Ca, and Mg, and T - P were higher in the 50 mg/L of phosphorus acid than the control, respectively. Based on the results obtained in this study, it appears that treatment of phosphorus acid in horticultural bed soil enhanced the growth of red pepper, cucumber and Kimchi cabbage.

Alterations of c-Fos mRNA Expression in Hypothalamic-Pituitary-Adrenal Axis and Various Brain Regions Induced by Intrathecal Single and Repeated Substance P Administrations in Mice

  • Choi, Seong-Soo;Lee, Han-Kyu;Shim, Eon-Jeong;Kwon, Min-Soo;Seo, Young-Jun;Lee, Jin-Young;Suh, Hong-Won
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.863-866
    • /
    • 2004
  • The effect of substance P (Sub P) injected intrathecally (I.t.) on c-fos mRNA expression in vari-ous tissues was examined in the present study. We found that a single administration of Sub P(0.5 nM) caused an increase of the c-fos mRNA level in the hypothalamic-pituitary-adrenal(HPA) axis, hippocampus, and spinal cord. The time-course study showed that c-fos mRNA level was maximal at 10 min and began to decrease 30 min after the Sub P injection in all tis-sues, and the Sub P-induced increase of the c-fos mRNA level was returned to the control level 1 h after the injection. The kinetics of the c-fos mRNA expression in mice that were repeatedly injected with Sub P (every 30 min interval up to 4 times) were different in the HPA axis, hippocampus, and spinal cord. The increased c-fos mRNA level in the hypothalamus and the spinal cord induced by I.t. injected Sub P remained at a high level. In the pituitary gland, adrenal gland, and hippocampus, the increased level of c-fos mRNA expression gradually returned to the control level during the repeated substance P injections up to 4 times. Our results suggest that spinally injected Sub P-induced pain stress increases c-fos mRNA expres-sion in the spinal cord, hippocampus, and HPA axis. In mice repeatedly injected with Sub P, the kinetics of c-fos mRNA appear to be different varied from tissue to tissue.

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.431-435
    • /
    • 2012
  • In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.