• Title/Summary/Keyword: H/sub ∞/ control

Search Result 793, Processing Time 0.033 seconds

Diffusion Barrier Properties of W-C-N Thin Film between La0.67Sr0.33MnO3 and Si

  • So, J.S.;Kim, S.Y.;Kang, K.B.;Song, M.K.;Lee, C.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.130-132
    • /
    • 2005
  • Tungsten carbon nitride (W-C-N) thin films were produced by reactive radio frequency (RF) magnetron sputter-ing of tungsten in $Ar-N_2$ gas mixture. The effects of the variation of nitrogen partial pressure on the composition, and structural properties of these films as well as the influence of post-deposition annealing have been studied. When $La_{0.67}Sr_{0.33}MnO_3$ was coated on the W-C-N/Si substrate, coercivity ($H_c$) and magnetization at room temperature shows 58.73 Oe, and 29.4 emu/cc, respectively. In order to improve the diffusion barrier characteristics, we have studied the impurity behaviors to control the ratios of nitrogen and carbon concentrations.

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Real-time Nutrient Monitoring of Hydroponic Solutions Using an Ion-selective Electrode-based Embedded System (ISE 기반의 임베디드 시스템을 이용한 실시간 수경재배 양액 모니터링)

  • Han, Hee-Jo;Kim, Hak-Jin;Jung, Dae-Hyun;Cho, Woo-Jae;Cho, Yeong-Yeol;Lee, Gong-In
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.141-152
    • /
    • 2020
  • The rapid on-site measurement of hydroponic nutrients allows for the more efficient use of crop fertilizers. This paper reports on the development of an embedded on-site system consisting of multiple ion-selective electrodes (ISEs) for the real-time measurement of the concentrations of macronutrients in hydroponic solutions. The system included a combination of PVC ISEs for the detection of NO3, K, and Ca ions, a cobalt-electrode for the detection of H2PO4, a double-junction reference electrode, a solution container, and a sampling system consisting of pumps and valves. An Arduino Due board was used to collect data and to control the volume of the sample. Prior to the measurement of each sample, a two-point normalization method was employed to adjust the sensitivity followed by an offset to minimize potential drift that might occur during continuous measurement. The predictive capabilities of the NO3 and K ISEs based on PVC membranes were satisfactory, producing results that were in close agreement with the results of standard analyzers (R2 = 0.99). Though the Ca ISE fabricated with Ca ionophore II underestimated the Ca concentration by an average of 55%, the strong linear relationship (R2 > 0.84) makes it possible for the embedded system to be used in hydroponic NO3, K, and Ca sensing. The cobalt-rod-based phosphate electrodes exhibited a relatively high error of 24.7±9.26% in the phosphate concentration range of 45 to 155 mg/L compared to standard methods due to inconsistent signal readings between replicates, illustrating the need for further research on the signal conditioning of cobalt electrodes to improve their predictive ability in hydroponic P sensing.

Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2 (금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성)

  • Chun, Kyung-Soo;Tak, Joong-Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.568-574
    • /
    • 2007
  • Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.

A Stdudy on SUS MASK Etching using of FeCl3 (FeCl3를 이용한 SUS MASK 에칭에 관한 연구)

  • Lee, Woo-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.412-418
    • /
    • 2020
  • This paper produced an automatic fluid management system that can accurately control the specific gravity of etching solution(FeCl3), and produced a SUS MASK applied to OLED. The target was set at 0.4 mm in diameter of the hole. As a result of this misconception, the etching speed increased when the specific gravity(S.G) value of FeCl3 was changed from 1.43 to 1.49. And when the weight was 1.49, it was found that the vertical diameter was 0.405 mm, approaching the target. When pressure injection was varied from 2.0kg/cm2 to 3.5kg/cm2, the hole diameter at 3.0 kg/cm2 averaged 0.4mm, matching the target. The characteristics of the change in gravity were analyzed by applying the additive 1.2% and setting the weight at 1.430 by mixing HCl and H2O in FeCl3 and fixing the injection pressure at 3.0 kg/cm2. When the weight changed from 1.460 to 1.469 the etching speed increased from 0.564 to 0.540. When the weight was 1.467, the hole diameter was measured at 0.4 mm and the target was reached.

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing;Zhen Li;Enrui Feng;Xiaomin Wang;Hongguang Kang;Yiyong Wang;Hui Jin;Jidong Li
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2023
  • The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

Effects of chlorine dioxide gas fumigation on the storage quality of astringent persimmon (Diospyros kaki T.) Cheongdobansi

  • Jiyoon Kim;Jung Soo Kim;Minhyun Kim;Ji Hye Kim;Insun Kim;Inju Nam;Jong-Kuk Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.190-204
    • /
    • 2023
  • Because of their short harvest season, large quantities of persimmons must often be processed within a limited time. Therefore, new methods to extend their storage life are required. This study examined the effects of chlorine dioxide (ClO2) gas fumigation for various treatment periods on the storage quality of astringent persimmons Cheongdobansi under low-temperature conditions. The conditions consisted of continuous treatment with ClO2, treatment for 2 weeks with ClO2, and no treatment, all of which are stored at low temperatures. Control samples (storage 0 days) without any treatment were prepared and all experiments were conducted for 10 weeks at two-week intervals. The ClO2 gas treatment maintained the moisture content, color value, hardness, soluble tannin content, and sensory characteristics. However, ClO2 gas treatment did not affect the soluble solids, pH, and total sugar content. In particular, continuous treatment with ClO2 maintained the storage quality after 6-8 weeks of storage, particularly the hardness and weakness (sensory evaluation). The results suggest the potential of continuous treatment with ClO2 as a highly effective method for maintaining the freshness of Cheongdobansi.

Seasonal Characteristics of PM2.5 Water Content at Seoul and Gosan, Korea (서울과 고산의 PM2.5 수분함량 계절 특성)

  • Lee, Hyung-Min;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • Water content of $PM_{2.5}$ (particles in the atmosphere with a diameter of less than or equal to a nominal $2.5{\mu}m$) was estimated by using a gas/aerosol equilibrium model, SCAPE2, for the particles collected at Seoul and Gosan, Korea. From measured and analyzed characteristics of the particles, the largest difference between Seoul and Gosan is the proportions of total ammonia (t-$NH_3$=gas phase $NH_3$+particle phase ${NH_4}^+$), total nitric acid (t-$HNO_3$=gas phase $HNO_3$+particle phase ${NO_3}^-$) and sulfuric acid ($H_2SO_4$). Even though both sites have sufficient t-$NH_3$ to neutralize acidic species such as $H_2SO_4$, t-$HNO_3$, and t-HCl (total chloric acid=gas phase HCl+particle phase $Cl^-$), equivalent fraction of t-$NH_3$ and t-$HNO_3$ are higher at Seoul and $H_2SO_4$ is higher at Gosan. Based on the modeling result, it is identified that the $PM_{2.5}$ at Seoul is more hygroscopic than Gosan if the meteorological conditions are the same. To reduce water content of $PM_{2.5}$, and thus, mass concentration, control measures for ammonia and nitrate reduction are needed for Seoul, and inter-governmental cooperation is required for Gosan.

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition (전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성)

  • Kim, Dong Ha;Riu, Doh-Hyung;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

New dammarane-type triterpenoid saponins from Panax notoginseng saponins

  • Li, Qian;Yuan, Mingrui;Li, Xiaohui;Li, Jinyu;Xu, Ming;Wei, Di;Wu, Desong;Wan, Jinfu;Mei, Shuangxi;Cui, Tao;Wang, Jingkun;Zhu, Zhaoyun
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.673-679
    • /
    • 2020
  • Background: Panax notoginseng saponin (PNS) is the extraction from the roots and rhizomes of Panax notoginseng (Burk.) F. H. Chen. PNS is the main bioactive component of Xuesaitong, Xueshuantong, and other Chinese patent medicines, which are all bestselling prescriptions in China to treat cardiocerebrovascular diseases. Notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1 are the principal effective constituents of PNS, but a systematic research on the rare saponin compositions has not been conducted. Objective: The objective of this study was to conduct a systematic chemical study on PNS and establish the HPLC fingerprint of PNS to provide scientific evidence in quality control. In addition, the cytotoxicity of the new compounds was tested. Methods: Pure saponins from PNS were isolated by means of many chromatographic methods, and their structures were determined by extensive analyses of NMR and HR-ESI-MS studies. The fingerprint was established by HPLC-UV method. The cytotoxicity of the compounds was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide assay. Results and Conclusion: Three new triterpenoid saponins (1-3) together with 25 known rare saponins (4-28) were isolated from PNS, except for the five main compounds (notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1). In addition, the HPLC fingerprint of PNS was established, and the peaks of the isolated compounds were marked. The study of chemical constituents and fingerprint was useful for the quality control of PNS. The study on antitumor activities showed that new Compound 2 exhibited significant inhibitory activity against the tested cell lines.