• Title/Summary/Keyword: H/sub ∞/ control

Search Result 793, Processing Time 0.029 seconds

Fabrication and Characterization of Y2Ti2O7 Powder and Thick Film by Chemical Processing (화학적 공정을 이용한 Y2Ti2O7 분말과 후막 제조 및 특성)

  • Lee, Won-Joon;Choi, Yeon-Bin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.289-293
    • /
    • 2017
  • $Y_2Ti_2O_7$ nanoparticles (0.3 mol%) have been successfully synthesized by the co-precipitation process. The samples, adjusted to pH7 with ammonia solution as catalyst and calcined at $700{\sim}900^{\circ}C$, exhibit very fine particles with close to spherical shape and average size of 10-30 nm. It was possible to control the size of the synthesized $Y_2Ti_2O_7$ particles by manipulating the conditions. The $Y_2Ti_2O_7$ nanoparticles were coated on a glass substrate by a dipping coating process with inorganic binder. The $Y_2Ti_2O_7$ solution coated on the glass substrate had excellent adhesion of 5B; pencil hardness test results indicated an excellent hardness of 6H. The thickness of the thick film was about $30{\mu}m$. Decomposition of MB on the $Y_2Ti_2O_7$ thin film shows that the photocatalytic properties were excellent.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(II) - Evaluation on the Characteristics of Corrosion as a Function of Pipe Material (소석회와 CO2를 이용한 상수관로의 부식제어(II) - 관종별 부식특성 평가)

  • Lee, Doo-Jin;Kim, Young-Il;Song, Young-Il;Park, Hyun-A
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.379-387
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to evaluate the corrosion characteristics of metal pipes, such as galvanized iron, copper, stainless steel, and carbon steel. When the pH in sand filtered and ozone+GAC treated water was increased with lime and $CO_2$ from 7.5 to 8.0, the concentration of residual chlorine decreased at higher pH and longer reaction time; the concentration of trihalomethane increased. The corrosion rate of coupons with corrosion control using lime and carbon dioxide was showed much smaller than those without corrosion control using pilot-scale simulated distribution system. The galvanized iron was corroded much faster than carbon steel, copper, and stainless steel. Especially, copper and stainless steel coupons were hardly corroded. The galvanized iron and carbon steel coupons with corrosion control were produced the corrosion products less than those without corrosion control by the results of environmental scanning electron microscope(ESEM) and energy dispersive x-ray spectroscopy(EDS) analyses. The galvanized iron coupon with pH and alkalinity adjustment by lime and carbon dioxide was detected about 30 percent of zinc, when the carbon steel was detected about 30 percent of calcium by calcium carbonate products formation. For the results of X-ray diffraction(XRD) analyses, the goethite(${\alpha}$-FeOOH) was identified as primary corrosion product of galvanized iron without corrosion control, while the Zinc oxide(ZnO) was found on corrosion products of galvanized iron coupon with corrosion control as the results of EDS analyses. However, the carbon steel corrosion products regardless of corrosion control were composed predominantly of maghemite(${\gamma}-Fe_2O_3$) and hematite(${\alpha}-Fe_2O_3$).

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

A study on breakthrough characteristics of ion exchange bed with H- and ETAH-form resins for cation exchange in NH3 and ETA solution including trace NaCl (미량의 NaCl을 포함하는 NH3 및 ETA 용액에서 H 및 ETAH 형 수지에 대한 이온교환 파과 특성 연구)

  • Ahn, Hyun-Kyoung;Kim, Youn-Su;Park, Byung-Gi;Rhee, In-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2021
  • Ion exchange (IX) performance on the exchanger bed is essentially evaluated for the generation of ultrapure water in electronics and chemical industries and for the corrosion control in nuclear power plants. The breakthrough characteristics of IX bed with multi-component were investigated with both cation- and mixed-IX beds of H- and ETAH-form for four kinds of cation exchange resins by using the combined solution of ethanolamine (ETA) and ammonia (NH3) at trace NaCl. Unlike major components (ETAH+ and NH4+ ), the phenomena of breakthrough and overshooting at bed outlet were not observed by Na+ over the test period (> 3 times theoretical exchange capacity of IX bed). The breakthrough from H-form resin bed was sequentially reached by ETAH+ and NH4+, while the overshooting was observed for ETAH+ at the breakthrough of NH4+. NH4+ was 51.5% higher than ETAH+ in terms of the relative selectivity determined with the width of breakthrough zone. At the increased concentration of Na+ at bed inlet, the selectivity and the overshooting were decreased and increased, respectively. Na+ leakage was higher from ETAH-form resin bed and was not identical for four kinds of cation-exchange resins, which may be reduced by improving the intrinsic property of IX resin.

Design of the H Current Controller Based on the PSO Algorithm for Reducing the Current Ripple Caused by the Saliencies of SPMSM (SPMSM 인덕턴스 돌극성에 의한 전류리플 저감을 위한 PSO 알고리즘 기반의 H 전류 제어기 설계)

  • Lee, Kwan-Hyung;Young, Jeon-Chan;Lim, Dong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1425-1435
    • /
    • 2013
  • The useful method for determining parameters of weighting functions used to design the $H_{\infty}$ current controller for attenuating the current ripple due to saliencies which SPMSM(Surface Permanent Magnet Synchronous Motor) also incorporates is described. To analyze the effect, the current ripple due to the structural and the saturation saliencies, the SPMSM model with nonlinear inductance function depending on the two independent variables, rotor position and stator current is simulated. After analysis, parameters of the weighting functions for $H_{\infty}$ current controller is selected to satisfy the robust stability, robust performance and specific performance in time and frequency domain by using the PSO(Particle Swarm Optimization) algorithm in the linear SPMSM model. Especially, the robust performance is proved that the selected weighting functions play a role in reducing the current ripple caused by the saliencies of SPMSM at the desired frequency range by the simple experiment.

Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process (습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가)

  • Koo, Jun-mo;Kim, Kyung Ho;Han, Yoonsoo
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Design and performance evaluation of ortho-para H2 conversion equipment (Ortho-para 수소변화장치의 설계 및 성능평가)

  • Baik, J.H.;Kang, B.H.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 1998
  • The ortho-para $H_2$ catalytic conversion equipment has been developed to reduce the evaporation loss from stored liquid hydrogen. The ortho-para $H_2$ conversion heat is evaluated at liquid nitrogen temperature. This problem is of particular interest in the design of the ortho-para $H_2$ converter in a hydrogen liquefaction system. The ortho-para $H_2$ conversion equipment consists of a catalytic converter, a precooler, and a liquid nitrogen bath. 30-90 cc of $Fe(OH)_3$ are employed as a catalyst in the present converter. The conversion heat and conversion effectiveness are evaluated when mass flow rate of hydrogen is in the range of 0.05-l.6 g/min. It is found that the ortho-para conversion heat is increased while conversion effectiveness is decreased as the mass flow rate of hydrogen is increased. Both the ortho-para conversion heat and conversion effectiveness are increased with an increase in the amount of the catalyst.

  • PDF

Improvement of Water Treatment Efficiency by pH Decreasing Agent (H2SO4) for Droughty Seasons (갈수기 정수장운영관리 사례 - 갈수기 pH저감제(황산)투입에 의한 정수처리효율 향상)

  • Ka, Gilhyun;Kim, Yunyung;Lee, Junho;Ahn, Chihwa;Han, Ihnsup;Min, Byungdae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Drinking water treatment is enhanced by coagulant dosages and chlorine injection because of pH increase in raw water in droughty seasons such as spring and fall. But water quality deterioration is occurred by increase in residual aluminium and disinfection by-products. Coagulation process can be used to control natural organic matter (NOM) during water treatment. The effect of coagulation process appeared to depend on the pH of water rather than coagulant dosages. In this study, for water treatment in high pH season $H_2SO_4$ was applied for pH adjustment at full scale. Before and after pH adjustment by $H_2SO_4$ injection, water quality of drinking water was evaluate. In the result of investigation of total organic carbon (TOC) removal in high pH season, TOC was removed approximately 30~40%, which showed decrease in water treatment efficiency. Also, it is increased both particle numbers and residual Al concentration in the water. After $H_2SO_4$ injection for adjustment to pH<7.5 in settled water, treated water turbidity decreased in 0.047 NTU from 0.059 NTU, and particle numbers of filtered water decreased in 20/mL from 90/mL. On the other side, TOC removal efficiency increased in approximately 10% after adjustment of pH. In the result of decrease in pH in raw water through more coagulants and prechlorine without $H_2SO_4$ injection, trihalomethanes (THMs) concentration increased in $16{\mu}g/L$ from $8{\mu}g/L$.

Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage

  • Du, Zhumei;Risu, Na;Gentu, Ge;Jia, Yushan;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.556-567
    • /
    • 2020
  • Objective: To improve the utility of native grass resources as feed in China, we investigated the dynamics of protein and carbohydrate fractions among Inner Mongolian native grasses, during ensiling and the aerobic stage, using the Cornell Net Carbohydrate and Protein System. Methods: Silages were prepared without or with lactic acid bacteria (LAB) inoculant. We analyzed the protein and carbohydrate fractions and fermentation quality of silages at 0, 5, 15, 20, 30, and 60 d of ensiling, and the stability at 0.5, 2, 5, and 10 d during the aerobic stage. Results: Inner Mongolian native grass contained 10.8% crude protein (CP) and 3.6% water-soluble carbohydrates (WSC) on a dry matter basis. During ensiling, pH and CP and WSC content decreased (p<0.05), whereas lactic acid and ammonia nitrogen (N) content increased (p<0.05). Non-protein N (PA) content increased significantly, whereas rapidly degraded true protein (PB1), intermediately degraded true protein (PB2), total carbohydrate (CHO), sugars (CA), starch (CB1), and degradable cell wall carbohydrate (CB2) content decreased during ensiling (p<0.05). At 30 d of ensiling, control and LAB-treated silages were well preserved and had lower pH (<4.2) and ammonia-N content (<0.4 g/kg of fresh matter [FM]) and higher lactic acid content (>1.0% of FM). During the aerobic stage, CP, extract ether, WSC, lactic acid, acetic acid, PB1, PB2, true protein degraded slowly (PB3), CHO, CA, CB1, and CB2 content decreased significantly in all silages, whereas pH, ammonia-N, PA, and bound true protein (PC) content increased significantly. Conclusion: Control and LAB-treated silages produced similar results in terms of fermentation quality, aerobic stability, and protein and carbohydrate fractions. Inner Mongolian native grass produced good silage, nutrients were preserved during ensiling and protein and carbohydrate losses largely occurred during the aerobic stage.