DOI QR코드

DOI QR Code

화학적 공정을 이용한 Y2Ti2O7 분말과 후막 제조 및 특성

Fabrication and Characterization of Y2Ti2O7 Powder and Thick Film by Chemical Processing

  • 이원준 (국립 창원대학교 신소재 공학과) ;
  • 최연빈 (국립 창원대학교 신소재 공학과) ;
  • 배동식 (국립 창원대학교 신소재 공학과)
  • Lee, Won-Joon (School of Nano & Advanced Materials Engineerin, Changwon National University) ;
  • Choi, Yeon-Bin (School of Nano & Advanced Materials Engineerin, Changwon National University) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Engineerin, Changwon National University)
  • 투고 : 2017.03.01
  • 심사 : 2017.04.05
  • 발행 : 2017.05.27

초록

$Y_2Ti_2O_7$ nanoparticles (0.3 mol%) have been successfully synthesized by the co-precipitation process. The samples, adjusted to pH7 with ammonia solution as catalyst and calcined at $700{\sim}900^{\circ}C$, exhibit very fine particles with close to spherical shape and average size of 10-30 nm. It was possible to control the size of the synthesized $Y_2Ti_2O_7$ particles by manipulating the conditions. The $Y_2Ti_2O_7$ nanoparticles were coated on a glass substrate by a dipping coating process with inorganic binder. The $Y_2Ti_2O_7$ solution coated on the glass substrate had excellent adhesion of 5B; pencil hardness test results indicated an excellent hardness of 6H. The thickness of the thick film was about $30{\mu}m$. Decomposition of MB on the $Y_2Ti_2O_7$ thin film shows that the photocatalytic properties were excellent.

키워드

참고문헌

  1. O. Merka, D. W. Bahnemann and M. Wark, ChemCatChem., 4, 1819 (2012). https://doi.org/10.1002/cctc.201200148
  2. A. L. Linsebigler, G. Lu and J. T. Yates Jr, Chem. Rev., 95, 735 (1995). https://doi.org/10.1021/cr00035a013
  3. S. Ikeda, M. Fubuki, Y. K. Takahara and M. Matsumura, Appl. Catal. A, 300, 186 (2006). https://doi.org/10.1016/j.apcata.2005.11.007
  4. L. F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y. W. Bao, T. Komatsud and K. Niihara, Scripta Mater., 64, 548 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.042
  5. N. Sellami, G. Sattonnay, C. Grygiel, I. Monnet, A. Debelle, C. Legros, D. Menut, S. Miro, P. Simon, J. L Bechade and L. Thome, Nucl. Instrum. Methods Phys. Res. Sect. B, 365, 317 (2015).
  6. P. Holtappels, F. W. Poulsen and M. Mogensen, Solid State Ionics., 135, 675 (2000). https://doi.org/10.1016/S0167-2738(00)00379-9
  7. M. B. Johnson, D. D. James, A. Bourque, H. A. Dabkowska, B. D. Gaulin and M. A. White, J. Solid State Chem., 182, 725 (2009). https://doi.org/10.1016/j.jssc.2008.12.027
  8. J. K. Gill, O. P. Pandey and K. Singh, Solid State Sci., 13, 1960 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.08.025
  9. R. Abe, M. Higashi, K. Sayama, Y. Abe and H. Sugihara, J. Phys. Chem. B, 110, 2219 (2006). https://doi.org/10.1021/jp0552933
  10. G. Ravi, S. Mansouri, S. Palla and M. Vithal, Indian J. Chem., 54, 20 (2015).
  11. S. Pace, V. Cannillo, J. Wu, D. N. Boccaccini, S. Seglem and A. R. Boccaccini, J. Nucl. Mater., 341, 12 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.005
  12. R. C. Ewing, W. J. Weber and J. Lian, J. Appl. Phys., 95, 5949 (2004). https://doi.org/10.1063/1.1707213
  13. N. Pailhe', M. Gaudon and A. Demourgues, Mater. Res. Bull., 44, 1771 (2009). https://doi.org/10.1016/j.materresbull.2009.03.009
  14. S. Ishida, F. Ren and N. Takeuchi, J. Am. Ceram. Soc., 76, 2644 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03993.x
  15. Z. Chen, W. Gong, T. Chen, S. Li, D. Wang and Q. Wang, Mater. Lett., 68, 137 (2012). https://doi.org/10.1016/j.matlet.2011.10.001
  16. E. Pavitra, G. S. R. Raju and J. S. Yu, Phys. Status Solidi (RRL), 3, 224 (2013).
  17. L. G. Shcherbakova, J. C. C. Abrantes, D. A. Belova, E. A. Nesterova, O. K. Karyagina and A. V. Shlyakhtina, Solid State Ionics, 261, 131 (2014). https://doi.org/10.1016/j.ssi.2014.01.019
  18. B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick and J. D. Jorgensen, Solid State Ionics, 129, 111 (2000). https://doi.org/10.1016/S0167-2738(99)00320-3
  19. T. Liu, L. Wang, C. Wang, H. Shen and H. Zhang, Mater. Des., 88, 862 (2015). https://doi.org/10.1016/j.matdes.2015.08.118
  20. C. L. Chen and Y. Zeng, Int. J. Refract. Met. Hard Mater., 56, 104 (2016). https://doi.org/10.1016/j.ijrmhm.2015.12.008
  21. M. Ebrahimi, D. Willershausen, K. S. Ashaghi, L. Engel, L. Placido, P. Mund, P. Bolduan and P. Czermak, Desalination, 250, 991 (2010). https://doi.org/10.1016/j.desal.2009.09.088
  22. L. Liu, C. Zhao and F. Yang, Water Res., 46, 1969 (2012). https://doi.org/10.1016/j.watres.2012.01.017
  23. J. K. Gill, O. P. Pandey and K. Singh, Solid State Sci., 13, 1960 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.08.025
  24. A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza and U. Amador, Solid State Sci., 7, 343 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.01.002
  25. A. L. Hector and S. B. Wiggin, J. Solid State Chem., 177, 139 (2004). https://doi.org/10.1016/S0022-4596(03)00378-5
  26. Z. S. Chen, W. P. Gong, T. F. Chen and S. L. Li, Bull. Mater. Sci., 34, 429 (2011). https://doi.org/10.1007/s12034-011-0116-2
  27. X. Changrong, C. Huaqiang, W. Hong, Y. pinghua, M, Guangyao and P. Dingkun, J. Membr. Sci., 162, 181 (1999). https://doi.org/10.1016/S0376-7388(99)00137-4
  28. K. M. Lin, C. C. Lin, C. Y. Hsiao and Y. Y. Li, J. Lumin., 127, 561 (2007). https://doi.org/10.1016/j.jlumin.2007.03.010
  29. Y. Zhang, M. Wang, Z. Le, G. Huang, L. Zou and Z. Chen, Ceram. Int., 40, 5223 (2014). https://doi.org/10.1016/j.ceramint.2013.10.091