• Title/Summary/Keyword: H*-algebra

Search Result 183, Processing Time 0.02 seconds

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

SELF-ADJOINT INTERPOLATION ON Ax = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • PARK, DONGWAN;PARK, JAE HYUN
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Given vectors x and y in a separable Hilbert space H, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let AlgL be a tridiagonal algebra on a separable complex Hilbert space H and let $x=(x_i)$ and $y=(y_i)$ be vectors in H.Then the following are equivalent: (1) There exists a self-adjoint operator $A=(a_ij)$ in AlgL such that Ax = y. (2) There is a bounded real sequence {$a_n$} such that $y_i=a_ix_i$ for $i{\in}N$.

  • PDF

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

ON A DECOMPOSITION OF MINIMAL COISOMETRIC EXTENSIONS

  • Park, Kun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.847-852
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operator on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$.

  • PDF

A NOTE ON A WEYL-TYPE ALGEBRA

  • Fernandez, Juan C. Gutierrez;Garcia, Claudia I.
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.269-277
    • /
    • 2016
  • In a paper of S. H. Choi [2], the author studied the derivations of a restricted Weyl Type non-associative algebra, and determined a 1-dimensional vector space of derivations. We describe all the derivations of this algebra and prove that they form a 3-dimensional Lie algebra.

Department of Mathematics, Dongeui University

  • Yoon, Suk-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.527-541
    • /
    • 2001
  • We find the necessary and sufficient conditions for the smash product algebra structure and the crossed coproduct coalgebra structure with th dual cocycle $\alpha$ to afford a Hopf algebra (A equation,※See Full-text). If B and H are finite algebra and Hopf algebra, respectively, then the linear dual (※See Full-text) is also a Hopf algebra. We show that the weak coaction admissible mapping system characterizes the new Hopf algebras (※See Full-text).

  • PDF

BIPRODUCT BIALGEBRAS WITH A PROJECTION ONTO A HOPF ALGEBRA

  • Park, Junseok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • Let (D,B) be an admissible pair. Then recall that $B\;{\times}^L_HD^{{\rightarrow}{\pi}_D}_{{\leftarrow}i_D}\;D$ are bialgebra maps satisfying ${\pi}_D{\circ}i_D=I$. We have solved a converse in case D is a Hopf algebra. Let D be a Hopf algebra with antipode $S_D$ and be a left H-comodule algebra and a left H-module coalgebra over a field $k$. Let A be a bialgebra over $k$. Suppose $A^{{\rightarrow}{\pi}}_{{\leftarrow}i}D$ are bialgebra maps satisfying ${\pi}{\circ}i=I_D$. Set ${\Pi}=I_D*(i{\circ}s_D{\circ}{\pi}),B=\Pi(A)$ and $j:B{\rightarrow}A$ be the inclusion. Suppose that ${\Pi}$ is an algebra map. We show that (D,B) is an admissible pair and $B^{\leftarrow{\Pi}}_{\rightarrow{j}}A^{\rightarrow{\pi}}_{\leftarrow{i}}D$ is an admissible mapping system and that the generalized biproduct bialgebra $B{\times}^L_HD$ is isomorphic to A as bialgebras.

THE CORONA THEOREM FOR BOUNDED FUNCTIONS IN DIRICHLET SPACE

  • Nah, Young-Chae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.141-146
    • /
    • 1997
  • In this paper we prove that the corona theorem for the algebra $H^{\infty}(D){\cap}D(D)$. That is, we prove that $\mathcal{M}{\setminus}{\overline{D}}$ is an empty set where $\mathcal{M}$ is the maximal ideal space of the given algebra.

  • PDF

ON THE FAILURE OF GORENSTEINESS FOR THE SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.537-543
    • /
    • 2015
  • In [9], the authors determine an infinite class of non-unimodal Gorenstein sequence, which includes the example $$\bar{h}_1\text{ = (1, 125, 95, 77, 71, 77, 95, 125, 1)}$$. They raise a question whether there is a Gorenstein algebra with Hilbert function $$\bar{h}_2\text{= (1, 125, 95, 77, 70, 77, 95, 125, 1)}$$, which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function $\bar{h}_2$.

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF