SELF-ADJOINT INTERPOLATION ON Ax = yIN A TRIDIAGONAL ALGEBRA ALG \mathcal{L}

DONGWAN PARK AND JAE HYUN PARK

Abstract. Given vectors x and y in a separable Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $x = (x_i)$ and $y = (y_i)$ be vectors in \mathcal{H} . Then the following are equivalent:

- (1) There exists a self-adjoint operator $A = (a_{ij})$ in $Alg \mathcal{L}$ such that Ax = y.
- (2) There is a bounded real sequence $\{\alpha_n\}$ such that $y_i = \alpha_i x_i$ for $i \in \mathbb{N}$.

1. Introduction

Let \mathcal{C} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on a Hilbert space \mathcal{H} and let x and y be vectors in \mathcal{H} . An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $A \in \mathcal{C}$ such that Ax = y. A variation, the 'n-vector interpolation problem', asks for an operator A such that $Ax_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[8]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance[9]:

Received January 11, 2006. Revised February 27, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 47L35

Key words and phrases : Self-Adjoint Interpolation, CSL-Algebra, Tridiagonal Algebra, $Alg\mathcal{L}$

his result was extended by Hopenwasser[2] to the case that \mathcal{U} is a CSL-algebra. Munch[10] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in a Hilbert space \mathcal{H} . Then $\langle x,y\rangle$ means the inner product of the vectors x and y. Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. For each $z \in \mathbb{C}$, \overline{z} is the complex conjugation of z.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots\}$. Let x_1, x_2, \cdots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \cdots)$. Then the algebra Alg \mathcal{L} is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson[1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let $\mathcal A$ be the algebra consisting of all bounded operators acting on $\mathcal H$ of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg \mathcal{L} = \mathcal{A}$.

We consider interpolation problems for the above tridiagonal algebra $Alg \mathcal{L}$.

Lemma 1. Let $A = (a_{ij})$ be an operator in the tridiagonal algebra $Alg\mathcal{L}$. Then the following are equivalent:

- (1) A is self-adjoint.
- (2) A is diagonal and a_{ii} is real for all $i \in \mathbb{N}$.

Proof. Suppose that A is self-adjoint. Since $A = A^*$,

$$\begin{pmatrix} a_{11} & a_{12} & & & & \\ & a_{22} & & & & \\ & a_{32} & a_{33} & a_{34} & & \\ & & & a_{44} & & \\ & & & & \ddots \end{pmatrix} = \begin{pmatrix} \overline{a_{11}} & & & & \\ \overline{a_{12}} & \overline{a_{22}} & \overline{a_{32}} & & & \\ & \overline{a_{33}} & & & \\ & & \overline{a_{34}} & \overline{a_{44}} & \overline{a_{54}} & \\ & & & & \overline{a_{55}} & \\ & & & & \ddots \end{pmatrix}$$

Hence $a_{ij} = 0$ for all $i \neq j$ and a_{ii} is real. So A is a real diagonal matrix. Conversely, it is clear.

Theorem 2. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $x = (x_i)$ and $y = (y_i)$ be vectors in \mathcal{H} . Then the following are equivalent:

(1) There exists a self-adjoint operator $A = (a_{kt})$ in $Alg\mathcal{L}$ such that Ax = y.

(2) There is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_i = \alpha_i x_i$ for all $i \in \mathbb{N}$.

Proof. Suppose that A is a self-adjoint operator $A=(a_{kt})$ in Alg $\mathcal L$ such that Ax=y. By Lemma 1, A is diagonal and a_{kk} is real for all $k\in\mathbb N$. Let $\alpha_k=a_{kk}$ for $k=1,2,\cdots$. Since Ax=y, $y_i=a_{ii}x_i=\alpha_ix_i$ for $i=1,2,\cdots$.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ of real numbers such that $y_i = \alpha_i x_i$ for $i = 1, 2, \cdots$. Let $A = (a_{ii})$ be a diagonal matrix such that $\alpha_n = a_{nn}$. Since $\{\alpha_n\}$ is bounded, A is a bounded operator. Also A is self-adjoint and Ax = y.

Theorem 3. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $x_i = (x_j^{(i)})$ and $y_i = (y_j^{(i)})$ be vectors in \mathcal{H} for $i = 1, 2, \dots, n$. Where n is a fixed natural number. Then the following are equivalent:

- (1) There exists a self-adjoint operator $A = (a_{kt})$ in $Alg\mathcal{L}$ such that $Ax_i = y_i$ for $i = 1, 2, \dots, n$.
- (2) There is a bounded sequence $\{\alpha_m\}$ of real numbers such that $y_j^{(i)} = \alpha_j x_j^{(i)}$ for $i = 1, 2, \dots, n$ and $j \in \mathbb{N}$.

Proof. Suppose that A is a self-adjoint operator $A=(a_{kt})$ in $\mathrm{Alg}\mathcal{L}$ such that $Ax_i=y_i$ for $i=1,2,\cdots,n$. Then A is diagonal and a_{kk} is real for each $k\in\mathbb{N}$ by Lemma 1. Let $\alpha_m=a_{mm}$ for $m=1,2,\cdots$. Then $\{\alpha_m\}$ is bounded. Since $Ax_i=y_i,\ y_j^{(i)}=a_{jj}x_j^{(i)}=\alpha_jx_j^{(i)}$ for $i=1,2,\cdots,n$ and $j=1,2,\cdots$.

Conversely, assume that there is a bounded sequence $\{\alpha_m\}$ of real numbers such that $y_j^{(i)} = \alpha_i x_j^{(i)}$ for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots$. Let A be a diagonal matrix with diagonal $\{\alpha_m\}$. Since $\{\alpha_m\}$ is bounded, A is a bounded operator. Also A is self-adjoint and $Ax_i = y_i$ for $i = 1, 2, \dots, n$.

By the similar way with the above, we have the following.

Theorem 4. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a separable complex Hilbert space \mathcal{H} and let $x_i = (x_j^{(i)})$ and $y_i = (y_j^{(i)})$ be vectors in \mathcal{H} for $i = 1, 2, \cdots$. Then the following are equivalent:

- (1) There exists a self-adjoint operator $A = (a_{kl})$ in $Alg\mathcal{L}$ such that $Ax_i = y_i$ for $i = 1, 2, \cdots$.
- (2) There is a bounded sequence $\{\alpha_m\}$ of real numbers such that $y_i^{(i)} = \alpha_j x_i^{(i)}$ for each $i \in \mathbb{N}$.

References

- [1] Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.
- [2] Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126.
- [3] Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math.
 (4), 33 (1989), 657–672.
- [4] Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
- [5] Jo, Y. S. and Choi, T. Y., Isomorphisms of $Alg\mathcal{L}_n$ and $Alg\mathcal{L}_{\infty}$, Michigan Math. J. 37 (1990), 305–314.
- [6] Jo, Y. S., Kang, J. H. and Dong Wan Park, Equations AX = Y and Ax = y in $Alg\mathcal{L}$, to appear J. of K. M. S..
- [7] Katsoulis, E., Moore, R. L., Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory 29 (1993), 115– 123.
- [8] Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273–276.
- [9] Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19 (1969), 45-68.
- [10] Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407-418.

Dongwan Park and Jae Hyun Park Department of Mathematics Keimyung University Daegu, Korea

Email: dpark@kmu.ac.kr