Bull. Korean Math. Soc. 38 {2001), No. 3, pp. 527-541

THE CROSSED COPRODUCT HOPF ALGEBRAS

Suk BoONG YOON

ABSTRACT. We find the necessary and sufficient conditions for the
smash product algebra structure and the crossed coproduct coal-
gebra structure with the dual cocycle o to afford a Hopf algebra
Bpa® H. If B and H are finite algebra and Hopf algebra, respec-
tively, then the linear dual (B ™ H)* is also a Hopf algebra. We
show that the weak coaction admissible mapping system character-
izes the new Hopf algebras B < H.

Introduction

The smash product algebra and the smash coproduct coalgebra are
well known in the context of Hopf algebras [1, 7, 9, 10, 11, 12] and these
notions can be viewed as being motivated by the semidirect product
construction in the theory of groups and in the theory of affine group
schemes, respectively.

The main construction we use is one which transforms Hopf algebras
in the category 7 M of H-comodules, for any Hopf algebra H, to (usual)
Hopf algebras; this is Radford’s biproduct [11]. Recently, D. Fischman
and S. Montgomery [6] have reviewed this structure of the Hopf algebra
from the Yetter-Drinfeld category point of view. Also, when B is an
algebra with weak action on the Hopf algebra H and a coalgebra in ¥ M,
Z. Jiao, S. Wang and W. Zhao [7] constructed the biproduct B o<, H
which is a {usual) Hopf algebra. B 1<, H is the crossed product B#,H
with a cocycle ¢ as an algebra and the smash coproduct B x H as a
coalgebra.

Now, it is very natural to consider what conditions the smash product
algebra structure and the crossed coproduct coalgebra structure will
inherit a Hopf algebra structure. In this paper we discuss this problem
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and find the necessary and sufficient conditions for it to be true. This
generalizes the cases in [11].

In Section 2 we will find a necessary and sufficient conditions for the
smash product algebra structure and the crossed coproduct coalgebra
structure with the dual cocycle on B® H to afford a bialgebra structure.
(Theorem 2.7} (we denote the resulting bialgebra by B * H.)

In Section 3 we introduce the Hopf algebra H with respect to the dual
cocycle o : B — H® H and so derive necessary and sufficient conditions
for the new bialgebra B t<* H to be a Hopf algebra. (Proposition 3.3
and Proposition 3.4.) In particular if B and H are finite dimensional
algebra and Hopf algebra, respectively, then the linear dual (B <® H)*
is exactly the structure of [7].

In Section 4 let B 4™ H be a bialgebra. We show that the weak coac-
tion admissible mapping system B Sﬁﬁ Bpra* H 2" H (jp and iy are
the canonical algebra inclusions, pg and 7y are the canonical coalgebra
projections) characterizes B x® H. (Theorem 4.7 and Theorem 4.11.)

1. Preliminaries

Throughout the paper we freely use the results and notions of {1, 10,
12]. In particular, all vector spaces will be over a field k. We adopt the
usual sigma notions for the comultiplications of coalgebras.

First of all recall that the notion of the smash product of k-algebra
A by a Hopf algebra H over k was introduced in {2, 9, 12] as follows: A
is a left H-module algebra if A is a left H-module via 7 : h®@ A — A,
h @ a — h-a and the following identies hold;

h-(ab)=> (h1-a)(hy-b) and h-1s=e(h)la

for all @,b € A and h € H. Now let A be a left H-module algebra. One
can then define the smash product A# H is defined as follow; as k-space,
A#H is A® H with elements a ® h written as a#h. Multiplication is
defined by

(ath)(b#) = > a(hs - b)#thal.
This makes A#H into a k-algebra with unit element 1 = 14#1y.
For example, let H = kG, the group algebra. It is well-known that
A is a left kG-module algebra if and only if G acts on A, that is, there
exists a group homomorphsim G — Autg A. In this case, A#kG = AxG,
the skew group algebra; here multiplication is just (ah)(bl) = a(h - b)hl
for all a,b € A and h,l € G. So this is the generalization for Hopf
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algebras of the skew group algebra A x G, which has proved very useful
in studying group actions.

Now the notion of crossed coproduct of k-coalgebra € by a Hopf
algebra H was introduced in [4, 3, 5] as follows: Let H coact weakly
on C to the left, that is, there is a k-linear map p : C — H ® C,
¢ = > ¢—1) ® co), such that the following conditions hold: for all
ceC,

(1) X ey ® e ® ¢z = X ci(—1)Ca(—1) ® ¢1(p) ® C2(0),

(2) 2-eleqoy)e-1y = ele)n,

(3) 2oele—r))ey = ¢

Let a : C — H ® H be a linear map, alc) = > ai(e) ® as(c).
Let C x4 H be the (in general noncoassociative) coalgebra (in general
without a counit) whose underlying vector space is C ® I and whose
comultiplication is given by

Aa(c A h) = Z(Cl A 62(_1)a1(63)h1) @ (02(0) X a2(63)h2)

and €4 : C o H — k given by eq(c 2 h) = eclc)ey(h). If C 2o H is a
coassociative with £, = £0 ® £y as counit element under the structures
A, and g, as above, we say C X4 H a crossed coproduct and o the dual
cocycle.

LEMMA 1.1. Cx, H is a crossed coproduct if and only if the following
three conditions hold:

( normal cocycle condition ) :
> elai(e))oalc) = Y e(an(e))ar(e) = e(c)1m.
( cocycle condition ) :
Z ci-nai(ez) ® arlerg))az(cz)1 ® aa(eyg))ez(cs)2
= aifeai(e)r ® az(er)an(ca)z @ onfca).
( twisted comodule condition ) :
3 eynya(ez) ® exoy_1ye2(ez) ® i)
= Z a1(e1)ez(—1)1 ® aale1)ear-1)2 ® e
forallhe H,ce (C.
Proof. See [5]. d
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In this paper, suppose that a Hopf algebra H acts on an algebra B
with the k-bilinear map H®B — B, h@b— h-b and H coacts weakly on
a coalgebra B with the k-linear map p: B - H® B, b— > b_1) @by
for all b€ B, h € H. Assume that o : B — H ® H a k-linear map
defined by a(b) = > a1 (b)) ® ag(b) which is convolution invertible with
inverse denoted by a~1(b) = Y. a7 (b)) ® a3 ' (b) for all b € B.

2. The bialgebra structure on B <™ H

In this section we derive necessary and sufficient conditions for B® H
to be a bialgebra with the algebra structure of B#H and the coalge-
bra structure of B x, H. If (B ® H, mB#H,pB#H,ABNaH,EBNQH) is
bialgebra, we denote this bialgebra by B pa® . Here we have written
b ™ h (or more informally by b k) for the tensor b® A for all b € B,
heH.

Putting egporr = €,y = € and Apepy = Apy,u = A, then we
will first determine € and A are algebra maps.

LEMMA 2.1. € is an algebra map if and only if £g is an algebra map
and the equation eg(h - b) = ey (h)ep(b) holds for allbe B, h € I.

Proof. Let a,b € B and h,l € H. We compute
e((apah)(bal)) =3 epla(hy - b))en(hs)en(la)
= ZEB (a)ep(hy - bleg(h2)en(l)
= ep(a)en(h)es®d)en(l)
= e(a< h)e(bal)

the first equality using that g is an algebra map, the second equal-
ity using that £p is an algebra map and the third equality using that
epo(h,l) = eggu(h,l) and the fourth equality using that £g(h - b) =
eg(h)ep(b). U

Now, we check that A is an algebra homomorphism.

LEMMA 2.2 A(lB B IH) = (lB £ lH) @ (15 ] lH) if and only if
p(lB) =1p&lg, AB(IB) =1g®1lg and Ot(lB) =1p®lpyg.

Proof. 1t is easy check from similar calculations to those of [11, eq.
2.3]. This completes the proof of the lemma. O
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Now, we want find the conditions such that A is multiplicative on
Boa™ H.
First, we compute

A((avah)(bal))
=A (z a(hy - b) 5a hal)
=3 (o 54 (a(h - )50 ((a(h1 . b))3) hali
® (a(h1 : b))m > ag((a(hl : b))s)h3£2.
and
Alarah)A(brl)
= Z (al B Ag(—1)01 (ag)hl) (b1 (% bg(_l)al(bg)ll)
® (a9(0) 4 2{az)ha) (ba(o) > cra(b3)la)

= Z ail ((az(_1)1051(0»3)1h1) : bl)

B (@o(—1)2011 (a3)2ha) (ba—1y0ur (b3)i1)
® a ) ((az(ashhg) : bg(o)) b {2 (as)oha) (aa(bs)l)-

So we have the deduced equation as following:
> (alhs - 1)), 5 (alby - 5))y_yyoa ((alhs -5)3 ) hals
® (a(hl . b))2(0) & ag((a(hl . b))g)h;:,lg

(1) =Za1((a2(_1)1a1(a3)1h1) . bl)
] (ag(_l)gal(ag)zhg) (bg(_l)al(bg)ll)
& az(o) ((ag(ag)lhg) . 52(0)) [pod] (ag(a3)2h4) (az(bg)lz)

for all a,b € B and h,l € H.

To holds the above equation (1), it is enough to show [7, 11] that for
allabeBandh le H,

A(axal)(bral)) = Alax1)A(bral),

A(axl)(1al)) = Alaa1)A(lal),
A((1oah)(bal)) = Al h)A(bal),

4 A((1ah)(1xl)) = Al h)A(1xl).

Since the case (2) is automatically holds, we will consider for the oth-
ercases. At first, we will find the sufficient conditions for the othercases.
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LEMMA 2.3. Suppose that the following conditions hold:
(1) pab) = p(a)o(b),
(2) Y(h-a)—1y ® (h-a)p) = 2 hiai_1) ® Ay - a),
(3) a1 @ ag)-1) ® 4(g)0) = L 4(-1)1 ® a(-1)2 ® 4(0),
(4) > (ab)1 ® (ab)acv: ((ab)3) ® az((ab)s)
=3 a1 (ap_nyar{as) -b1) ®as ) (o (3)2-ba) o (b3) @ (es )z (b3).

Then the equation A((a > 1){b< 1)} = A(a > 1)A(b >a 1) holds
for all a,b € B.

Proof. We compute for all a,b € B,

A((ama1){(bal))
=Z(ab)1 B (ab)2(r1)al((ab)3)
® (ab)ag) b ag ((ab)s)
=Y ar(apc-nen(azh - b1) 5 azoy(—1yea (as)aba_1yc (bs)
® az(0)(0) (@2(a3)1 - baoy) P cra(ag)aca(b3)
= Z a1 (a1 (@3)1 - br) >4 a1y (a3)2by_1)0 (bs)

® ag(g) (a2(as)y - bapy) > aa{as)zas(bs)
=A(ax1)A(bra 1)

the second equality using that the conditions (1}, (2), and (4), the third
equality using that the condition (3). This completes the proof of the
lemma. O

LEMMA 2.4. Suppose that the following conditions hold:

(1) a(l) =11,

(2) X(h-a)1® (h-a)e =322(h1 - a1) ® (h2 - a2),

(8) 22(h1 - a1)—yyen(he - a2)hs ® (h1 - a1)(0) ® a2(h2 - a2)
=3 hiaypyai(az) ® by - ay() ® aalaz).

Then the equation A((1 > h)(b 1)) = A(L v h)A(b 1) holds
forallac B, he H.
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Proof. We compute for all b€ B, h € H,
A((1ah)(bral))

= (b1 b)1 ba (1 - b)g-yyar (b1 - B)s) e
® (b1 - b)ago) 2 2 ((h1 - b)3) hia
= (b1 - b1) 3 (ha - ba)(-ny@(ha - by)hs
® (hg - ba)(o) bt 02(hs - b3)hs
= Z(hl +b1) bt hobg(_1yc1 (b3) ® b - ba(gy D cxa(bs) by
=A(loah)A(bral)
the second equality using that the condition (2), the third equality using

that the condition (1) and (3). This completes the proof of the lemma.
O

LEMMA 2.5. Suppose that the identity o1p) = 15 @ lyholds. Then
the equation A((1 ba h)(1 s 1)) = A(1 a h)A(1 < 1) holds for all
hleH.

Proof. We compute for all h,l € H,

A((Loah)(1pal)) =) 1oahih @ Laholy
= A(lsah)A(lral)

the equality using that the above condition. This completes the proof
of the lemma. O

Now, we have directly needed following lemmas for the above cases
to be the necessary conditions;

LEMMA 2.6. Let B#H be a smash product and B »x, H a crossed
coproduct. If the identity ep(h - @) = eg(h)ep(a) holds for all a € B,
h € H. Then the following are equivalent: for all a € B and h ¢ H,

(1) (i) Z(h-ah ®@(h-a)s =3 (h1-01)® (h2-a2),
(ii) >-(h1 - a1)(cpoalhs - ap)hs @ (h1 - a1)) ® aa(ha - a2)
= Z h1a1(_1)a1 (ag) R hy - ay(0) @ ag(ag).
(2) S(ha - b)1 54 (hy - b)a(1yen (b1 - b)s)hs
®(h1 - bagy 3 ag((hl . b)3)h3
= Z(h’l . bl) £ hzbg(_l)al(b;-;) ® hs - 52(0) [ O{z(b3)h4.

Proof. We note that the condition (2) is equivalent to the case 3. O
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Consequently, we now have necessary and sufficient conditions for
B ® H to be a bialgebra with the structures indicated above as the
following statements:

THEOREM 2.7. Let H be a bialgebra over a field k. Suppose that B Is
an algebra with action viat: H® B — B, a®h + a-h and a coalgebra
with weak coaction viap: B— H® B, a — EG(—U ®a() for alla € B,
h € H. Assume that B#H is a smash product and B x4 H a crossed
coproduct with the dual cocycle oo Then the following conditions are
equivalent:

(1) B H = (B ® H, MEBLH, LB H, AB)«QHaEBxQH) is a bialgebra.
(2) The following identities hold; for all a,b € B and h,l € H,
(B1) g and p are algebra maps,
(B2) ep(h-a) =en(h)ep(a),
(B3) Yo(h-a) @ (h-a)s = $3(h1 - ) & (ha - az),
(Bd) >~ ac-1) ® aqo)-1) @ a(oy0) = 20 a1 ® a-1)2 @ (),
(B5) a(l) =1®1,
(B6) Ap(lp) =1p®1g,
(B7) Y (ab)1 ® (ab)aa1((ab)s) ® az((ab)s)
=3 ar(ag-yoa(as)1 - b1) @ aygy (e (as)z - b2) o (bs)
®az(as)ag(bs),
(B8) >2(h1 - a1)(—nyar(he - a2)hs @ (b1 - a1)(p) ® a2(h2 - az)
=3 hayyaa(as) ® by - ayg) @ az(az).
(3) B is an algebra in ' M and a coalgebra in g M, eg is an algebra
map, and the conditions {B5) — (B8) of (2) hold.

Proof. (2) <= (3) is clear. (1) = (2) follows from the lemmas 2.1 —
2.5. (2) = (1) follows from the lemma 2.6 and similar calculations to
those of [11]. This completes the proof of the theorem. O

REMARK 2.8. If o is trivial, that is, a(e) = £5(a)ly for all a € B,
then this theorem is that of [11].

Now, we introduce some examples of this new bialgebra B <® H. Let
H be any finite-dimensional Hopf algebra over k& with antipode & and
let 8* denote the antipode of H*. We have the identification of f @ H*
with (H* @ H)*. The composition inverses of S and §* are denoted by
S~! and 8&* 71, respectively.

‘We need comodule actions correspondence to module actions as the
following (7, 8, 10]: for all p,¢q, f,g € H* and h,l € H,
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— H®H' = H, h—p=Y <ph >h,
W H ®@H - H, " (p@h) = Shi—phy,
o H'©@H—H, ¢ (pah)=> p—h—85p,
and
p:H—o H@H*, <plh),f&l>=<flh>,
pPriH—-H®H, <gh),fel>=) <fhsS ()l>,
poH = HOH', <p(Nhog>=) <hS T e)fn>,
respectively.

EXAMPLE 2.9. We have the following results under the above nota-
tions: Assume that H is cocommutative. Then both H*% p?'¥" H
and H <#"¥ H*®P are bialgebras. In particular there is a bialgebra
isomorphism

(H"*P o'V H)" — H o™ H**P,

3. The Hopf algebra B < H

In this section we derive the necessary conditions for the new bial-
gebra B <* H to be a Hopf algebra. Firstly, we introduce the Hopf
algebra H with respect to the dual cocycle a: B — H® H.

DEFINITION 3.1. Let H be a bialgebra over the field k. Suppose that
B is both an algebra and a coalgebra over &k, « : B — H ® H and
S : H — H are linear maps. Then 8§ is called a a-antipode of H if

(1) mg(S® 1y)mpeu{a® Ay) =(ep ®eg)(1s ® 1u),
(2) mu(ly ® Symugu(a® Ap) =(ep @ en)(lp @ lu).
In this case, we say that H is a «a-Hopf algebra.

In summation notation, {1) and (2) say for all a € B and h € H,
(1) mu(S @ lp)mugr(a ® Ax) (e ® )

:ZS(al (a)hl) & Ofg(ﬂ.)hg
=¢epla)ep(h)(1p ® 1x)
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and
(2) mH(1H®S)mH®H(a®AH)(a®h)
=" ai(alhy ® S(az(a)hs)
=epla)en(h)(1p ® 1n),
respectively.

EXAMPLE 3.2. Let H be a Hopf algebra with an antipode S. Suppose
that a : K — H ® H is a trivial linear map. Then we can regard S as a
a-antipode of H.

ProrosITION 3.3. Let B <* H be a bialgebra. Suppose that H is a
a-Hopf algebra with a-antipode Sy and Sg is a convolution invertible
element of 15 in End(B). Then B <® H is a Hopf algebra with antipode
S defined by for alla € B and h¢ H,

S(a Pl h) = Z(l g SH(a(_l)h)) (SB(CL(Q)) ey 1).

Proof. We compute for all e € B and h ¢ H,
(1o mr * S){a < h)
=mpH(l ® S)Apn,nlavah)

= Z MEB4H ((al B ag(_l)al(ag)hl) ® S(ag({)} > Ofg((l;g)hQ))

= Z ((al e ag(_l)al (as)hl) (1 1 SH(ag(g)(_l)az(a3)h2)))
(SBlasoye) >a1)

= Z Iia,l bx] (az(_l)al(ag)hl)SH (az(g)(_l)ag(ag)hg):l

(Sp(ag)) 1)
= (a1 241)(Sp(az) > L)en(h)
=3 (01S5(az) 5 1)en (h)

=egp(a)en(h)(1p < 1g)
the third equality using that it is an associative algebra, the fourth
equality using that the weak coaction, the fifth equality using that Sy
is a o-antipode of H and the seventh equality using that Sg is the
convolution invertible of 15. The other case is analogue to this case.
Therefore, we have § is an antipode for B 0<* H. This completes the
proof of the proposition. a
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PROPOSITION 3.4. Suppose that B <® H is a Hopf algebra with
antipode 8. Then H is a a-Hopf algebra with the a-antipode § and the
identity 1p has an invertible in the convolution algebra Homy(B, B).

Proof. Tt is straightforward from similar calculations to those of [11,
Proposition 2]. This completes the proof of the proposition. O

REMARK 3.5. Assume that B and H are finite dimensional algebra
and Hopf algebra, respectively and that B 0«* H is a Hopf algebra with
antipode &. Then the linear dual (B < H)* = B* <, H* is a Hopf
algebra which is the crossed product with the cocycle

c:H*@H = (H®H) o, B
as an algebra and the smash coproduct as a coalgebra with the antipode
S B'oH = (BeH) <5 (BoH) 2B @ H".
That is, it is exactly the structure of [7].

4. The characterizing of the Hopf algebra B 0<* H

In this section we show that the weak coaction admissible mapping
system characterize the new Hopf algebra B ® H which was con-
structed in Theorem 2.T7.

DEFINITION 4.1. Let H be a bialgebra and C a coalgebra. Suppose
that o : C — H ® H is a linear map. Then (C, gy, @) is called a left
(resp. right) (H,a)-comodule if there is a map p : C — H ® C (resp.
pr 1 C — C ® H) such that the following conditions hold:

M) A®p)n=we 1Ay ® 1)1 p)Ac

(resp. (pr @ L)pr =(1® w)(1* ® Ag)(1® pr)Ac),

(2) cn® 1} =1 (resp. (1@¢en)pr =1)
where w : C® H® H — H ® H is the linear map via w(c@ h®1!) =
S ai{e)h@ag(c) forall c€ C and bl € H.

EXAMPLE 4.2. Let H be a bialgebra. If « : H — H ® H is a trivial.
Then (H,Ap,a) is a left (H,a)-comodule. This is the same as the
comodule structure map on H obtained by the comultiplication of H as
comodule structure.

ExXAMPLE 4.3. Let C be a coalgebra. Assume that C is a left H-
comodule with the structure map p. C > H@Cand o« : C — H@® H
is trivial. Then (C, p, ) is a left (H, a)-comodule.
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DEFINITIONS 4.4.

(1) Let ' and D be coalgebras. A linear ma f : C — D is called a
weak coalgebra map if epf = e

{(2) Let C be a coalgebraand p;: C - H®C and p, : C = C® H be
a left coaction and a right coaction on C, respectively. Then B is
called a weak H-bicomodule if the following identities hold:
(i} th®@l)p=1and (1®en)pr =1,
(i) (1@ o) = (p @ 1)p,.

DEFINITION 4.5. Let B x®* H be a bialgebra and assume that A
is a bialgebra over k. Then B ‘—‘»? A 2 H is called a weck coaction
admissible mapping system if the following conditions hold:

(a) prj=1lpand m-i= 1y,

(b) m is a bialgebra map, ¢ is an algebra map and a weak coalgebra,
map, p is a coalgebra map and j is an algebra map,

(c) pis a H-bimodule map (A is given the weak H-bimodule structure
via pullback along ¢ and B is given the trivial right H-module
structure},

(d) j7(B) is a sub-H-bicomodule of A and p|;(p) is a weak bicomodule
map (A is given the weak H-bicomodule structure via pushout
along m and B is given the trivial right H-comodule structure)
and there is a map & : B =<® H — H @ H such that A is a left
(right) (H, &)-comodule,

(€ (G-pxli-m)=1

EXAMPLE 4.6. Assume that the dual cocycle @« : B — H ® H are
trivial, that is, a(a) = eg(a)ly for all @ € B. Then this concept is
exactly that of [11].

THEOREM 4.7. Suppose that B <® H is a bialgebra. Then B Sﬁg
B H ‘:’;"; H is a weak coaction admissible mapping system.

To complete the proof of this theorem, it is enough to show that the
following three lemmas hold via some natural maps as the follows; for
alla € B and h,l € H,

pp: B H - B, awihw— ae(h),
g Bx=*H — H, awih— egla)h,
jp:B—-Bx*H, a—amal,

and
tg:H—>Bx=*H, hr1xh
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Also we define a right and a left actions of H on B x® H is given by
Y B H@H— Bod* H, axh@®l— Y avahl
and
G H®Bo" H— B H, h®axlr Y (h1-a)edhy,

respectively.
Similarly we define a right and a left coactions of H on B <™ H by

pr:B<x*H—-Bx®"HQ®H, amxh+— Zal pa a1 (a2)h1 ® az(ag)hs
and
pr:Bx*H - H® Be™ H,
abdh— Z al(_l)al(ag)hl ® ay(g) b az{az)ha,
respectively.
LEMMA 4.8. Suppose that B <* H is a bialgebra. Then (B t<®

H, p.,a) is a right (H,&)-comodule where & : Bi<® H - H® H via
alapah) =3 ai(a) ® ag(a)e(h) for alla € B.

Proof. We compute for all a € Band h € I,

(or ® Lor(a 1 )
= zch b ap{az)o (az)1hy @ az(az)on (as)ahs
® c2(az)hs
=" a1 > agy_yyaa(as)l ® ai(asg))az(as)ihe
® az(az())az(as)2hs
=(1psatt @ W) (o pr @ D) (Lo it @ pr)ABoce (a4 )
the second equality using that the cocycle condition holds and the third

equality using that the normal cocycle condition holds. This completes
the proof of the lemma. O

LEMMA 4.9. Suppose that B <* H is a bialgebra. Then (B <®
H,p, &) is a left (H,&)-comodule where & : B <® H — H® H via
afaah) =3 ai(a) ® az(a)e(h) for all a € B.
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Proof. We compute for all e € Band h € H,

(1® pryp{ar< h)
=Y ai-nai(a2)hs ® ay-n e (aop)az(az)ihe
® arop(0) > @2(aso)2)oz(az)zhs
= Z al(—l}a2(—l)ai(‘33)h1 ® a’l(O)(—l)al(a2(0))a2 (a3)1h2
® ax(gy(o) D9 2(az(0) )2 (a3)2hs
= Z ar(—nya{e2)a(ash ® ayo)—1y@2(az)on(as)2he
® ay(py(o) P @2{a3)ha

=w@1)(1®@Ar ®1)(1® pr)Appa=pr(a > h)

the second equality using that H coact weakly on I, the third equality
using that the cocycle condition holds and the fourth equality using
that the normal cocycle condition holds. This completes the proof of
the lemma. O

LEMMA 4.10. Suppose that B <* H is a bialgebra. Then (B v
H, pp, pr} is a weak H-bicomodule.

Proof. We compute for alla € B and h € H,

(1@ pr)pifa v h)

= Z ay—1a1(e2)h ® ajon
b (@1(0)2) 02 (a2)1h2 @ aa(ai(g)2)c2(az)2hs

= Z ay—1)a-1c(az)h ® ay(g) 2 a1 (agpy)eaz(as)ihe
® az{azy)az(as)ahs

=" aypaa(az)ai(as)ihr @ ay(g) > az(az)an (az)2hy
® as{az)hs

=(p1 ® 1)pr(avah)

the second equality using that H coacts weakly on B and the third
equality using that the cocycle condition holds. This completes the
proof of the lemma. O

THEOREM 4.11. Let B ‘:? A 27 H be a weak coaction admissible
mapping system. Then there exists only one bialgebra isomorphism
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f: B H— A such that

7] TH
B=—Bw"H=—2>H
PB 1ry
J e
B A=——=H
P i

are comimntite.

Proof. We define f : B o« H — A by a = h v j(a)i(h) and
g:A— B Hviaaw— Y pla1) xn(ay) foralla € B and h € H.
Then it is easy check from similar calculations to those of [11, Theorem
2(2)] that f and g are bialgebra maps and inverse to each other. This

completes the proof of the theorem. O
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