• Title/Summary/Keyword: H$_{\infty}$ Controller

Search Result 572, Processing Time 0.031 seconds

A Design of the Mixed $H_2 / H_\infty$ Controller Using Genetic Algorithms (유전 알고리즘을 이용한 $H_2 / H_\infty$ 혼합 제어기 설계)

  • Lee, Jong-Sung;Kang, Ki-Won;Park, Ki-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • In this paper, the genetic algorithm is used to design a mixed H₂/ H/sub ∞/ controller Two kinds of controller forms, Youla's form and the general form, are considered to design a mixed H₂/ H/sub ∞/ controller. Efficient searching methods are sought to minimize the given H₂cost function under the H∞ constraint. It is verified by an example that the developed algorithm can provide stable results in the region where unstable results are shown by the conventional gradient method.

  • PDF

A Study on the Design of Adaptive $H_{\infty}$ sub INF Controller-Polynomial Approach (적응 $H_{\infty}$ 제어기의 설계에 관한 연구 - 다항식 접근방법)

  • Kim, Min-Chan;Park, Seung-Kyu;Kim, Tae-Won;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.129-136
    • /
    • 2002
  • This paper presents a $H_{\infty}$ robust controller with parameter estimation in polynomial approach. For good performance of a uncertain system, the parameters are estimated by RLS algorithm. The controller minimizes the sum of $H_{\infty}$ norm between sensitivity function and complementary sensitivity function by employing the Youla parameterization and polynomial approach at the same time. A numerical example and its simulation results are given to show the validity of the proposed controller.

Observer-based H$_{\infty}$ Controller Design for Delayed Singular Systems (시간지연 특이시스템의 관측기 기반 H$_{\infty}$ 제어기 설계)

  • 김종해
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2489-2492
    • /
    • 2003
  • In this paper, observer-based H$\sub$$\infty$/ controller design method for singular systems with time-varying delay by Just one LMI condition is presented. The sufficient condition for the existence of controller and the controller design method are presented by one perfect LMI approach. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

  • PDF

Robust and Non-fragile H Controller Design Algorithm for Time-delayed System with Randomly Occurring Uncertainties and Disturbances ) (임의발생 불확실성 및 외란을 고려한 시간지연시스템의 강인비약성 H 제어기 설계 알고리듬)

  • Yang, Seung Hyeop;Paik, Seung Hyun;Lee, Jun Yeong;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.89-98
    • /
    • 2015
  • This paper provides a robust and non-fragile $H_{\infty}$ controller design algorithm for time-delayed systems with randomly occurring polytopic uncertainties and disturbances. First, we design time-delayed system considering randomly occurring uncertainties and disturbances. Next, The sufficient condition for the existence of robust and non-fragile $H_{\infty}$ controller is presented by LMI(linear matrix inequality) using Lyapunov stability analysis and $H_{\infty}$ performance measure. Since the obtained condition can be expressed as a PLMI(parameterized linear matrix inequality) by changes of variables and Schur complement, all solutions including controller gain, degrees of controller satisfying non-fragility, $H_{\infty}$ norm bound ${\gamma}$ can be calculated simultaneously. Finally, numerical examples are given to illustrate the performance and the effectiveness of the proposed robust and non-fragile $H_{\infty}$ controller compared with the deterministic uncertainty model even though there exists randomly occurring uncertainties, disturbances and time delays.

Design of the $H_{\infty}$Controller for a Planner Robot System (2차원 평면운동 로봇 시스템에 대한 $H_{\infty}$ 제어기 설계)

  • 조도현;이상철;이종용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.96-104
    • /
    • 2000
  • In this paper, an $H_{\infty}$ robust controller has been designed for a large-scale system consisted of subsystems of mutually coupled plants. The physical plant, a two-dimensional horizontal movement robot system, has two subsystem plants mutually coupled by links. The designed $H_{\infty}$controller has been designed to get not only the robust stability for exogenous inputs to each plant but also the good tracking performance for the reference input to each plant. The $H_{\infty}$controller has shown the superior tracking performance and robust stability compared with the proportional-plus-derivative controller through computer simulations and physical experiments.

  • PDF

A Study on Power System Stabilization using $H_{\infty}$ Optimal Control Method ($H_{\infty}$ 최적 제어기법을 이용한 전력계통의 안정화에 관한 연구)

  • Hur, D.R.;Wang, Y.P.;Lee, J.P.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.232-234
    • /
    • 1998
  • In this paper, we are considered various possible disturbance conditions in order to design controller, $H_{\infty}$ optimal controller is successfully designed to control in such as situations. To do this, we are determined weighting function and design parameter $\gamma$ to method of trial and error by Glover-Doyle algorithm. To compare with $H_{\infty}$-PSS and conventional-PSS which is applied in nominal system and load variations, the dynamic characteristics of $H_{\infty}$-PSS controller was verified which has a good response.

  • PDF

A Robust Controller Design for the Position Control of a Spring-Mass System (탄성-질량시스템의 위치제어를 위한 강건 제어기 설계)

  • 박종우;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.41-49
    • /
    • 1999
  • In this paper, we design a controller using the $\mu$-synthesis method and apply it for the spring-mass system with noncollocated sensors and actuators. We assume that the values of the spring stiffness and load mass of the plant are uncertain. The plant is modeled with parametric uncertainty by using the state space equation, especially the descriptor form. The $H_\infty$ controller designed by the $\mu$-synthesis method is compared with the standard $H_\infty$ controller To compare performances of two $H_\infty$ controllers, it is assumed that both controllers were designed with same weighting functions except that the $\mu$-synthesis controller has structured uncertainties. By compared with the standard $H_\infty$ controller, we show that the designed controller has satisfactory robust performance as well as robust stability by simulations and experiments.

  • PDF

Development of Steering System for Unmanned Vehicle by Using Robust Control (무인차량의 강인한 조향제어 시스템 설계에 관한 연구)

  • Jeong, Seung-Gwon;Kim, In-Su;Park, Gi-Seon;Lee, Jong-Nyeon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.747-756
    • /
    • 2002
  • The automatic steering system for unmanned vehicle was developed. The magnet and MR (Magnetoresistive) sensors are used for the tue detecting system. The lateral distance between sensor and the center line of the road is determined by the linearization of the distance according to the output. The PD control theory is used for the design of the controller to compare with $H_\infty$ control theory. The $H_\infty$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_\infty$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_\infty$ controller is robust far the disturbances in the test results.

Development of Vision Based Steering System for Unmanned Vehicle Using Robust Control

  • Jeong, Seung-Gweon;Lee, Chun-Han;Park, Gun-Hong;Shin, Taek-Young;Kim, Ji-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1700-1705
    • /
    • 2003
  • In this paper, the automatic steering system for unmanned vehicle was developed. The vision system is used for the lane detection system. This paper defines two modes for detecting lanes on a road. First is searching mode and the other is recognition mode. We use inverse perspective transform and a linear approximation filter for accurate lane detections. The PD control theory is used for the design of the controller to compare with $H_{\infty}$ control theory. The $H_{\infty}$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_{\infty}$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_{\infty}$ controller is robust for the disturbances in the test results.

  • PDF

LMI-based $H_{\infty}$ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Keh, Joong-Eup;Kim, In-Soo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.497-497
    • /
    • 2000
  • This paper is concerned with the design of LMI based H$_{\infty}$ controller for a line of sight(LOS) stabilization system. This system which is even linearized to analyse nonlinear characteristic has also a lot of uncertainties. In addition, the angular velocity disturbance from the vehicle's driving deteriorates the stabilized LOS, main purpose of this system. In case of fast driving, particularly, all components which are ignored and skipped to make mathematical modelling act as the uncertainties against this system. The robustness against these uncertainties has been also continuously demanded including the well tracking performance for the target. Therefore, this paper employed H$_{\infty}$ control theory to satisfy these problems and LMI method to make suitable controller with few constraints for this system. Although this system matrix doesn't have full rank, this method make it possible to design H$_{\infty}$ controller and deal with R and S matrices for reducing its order. Consequently, this paper shows that the re-analyses on the real disturbances are achieved and the proposed robust controller for them has better disturbance attenuation and tracking performance. This paper contributes the applicability of reduced order H$_{\infty}$ controller to real system by handling LMI..

  • PDF