• Title/Summary/Keyword: H$\ddot{o}$lder derivative

Search Result 7, Processing Time 0.019 seconds

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.

HÖLDER ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON PARAMETERS

  • Cho, Sang-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.241-252
    • /
    • 2011
  • Let $\{\Omega_{\tau}\}_{\tau{\in}I}$ be a family of strictly convex domains in $\mathbb{C}^n$. We obtain explicit estimates for the solution of the $\bar{\partial}$-equation on $\Omega{\times}I$ in H$\ddot{o}$lder space. We also obtain explicit point-wise derivative estimates for the $\bar{\partial}$-equation both in space and parameter variables.

HEAT EQUATION WITH A GEOMETRIC ROUGH PATH POTENTIAL IN ONE SPACE DIMENSION: EXISTENCE AND REGULARITY OF SOLUTION

  • Kim, Hyun-Jung;Lototsky, Sergey V.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.757-769
    • /
    • 2019
  • A solution of the heat equation with a distribution-valued potential is constructed by regularization. When the potential is the generalized derivative of a $H{\ddot{o}}lder$ continuous function, regularity of the resulting solution is in line with the standard parabolic theory.

HYPERBOLIC TYPE CONVEXITY AND SOME NEW INEQUALITIES

  • Toplu, Tekin;Iscan, Imdat;Kadakal, Mahir
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.301-318
    • /
    • 2020
  • In this paper, we introduce and study the concept of hyperbolic type convexity functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for this class of functions. In addition, we obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is hyperbolic convexity. Moreover, we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean integral inequalities.

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.