• Title/Summary/Keyword: H$\ddot{o}$lder continuity

Search Result 8, Processing Time 0.024 seconds

LOCAL CONVERGENCE OF THE SECANT METHOD UPPER $H{\ddot{O}}LDER$ CONTINUOUS DIVIDED DIFFERENCES

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • The semilocal convergence of the secant method under $H{\ddot{o}}lder$ continuous divided differences in a Banach space setting for solving nonlinear equations has been examined by us in [3]. The local convergence was recently examined in [4]. Motivated by optimization considerations and using the same hypotheses but more precise estimates than in [4] we provide a local convergence analysis with the following advantages: larger radius of convergence and finer error estimates on the distances involved. The results can be used for projection methods, to develop the cheapest possible mesh refinement strategies and to solve equations involving autonomous differential equations [1], [4], [7], [8].

  • PDF

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

GAUSSIAN CHAOS AND LOCAL H$\ddot{O}LDER$ PROPERTY OF STOCHASTIC INTEGRAL PROCESS

  • KIM JOO-MOK
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.585-594
    • /
    • 2006
  • We consider a stochastic integral process represented by multiple Ito-Wiener integrals. We derive gaussian chaos which has some shift continuous function. We get continuity property of self-similar process represented by multiple integrals and finally we show that $Y_{H_t}$ (t) is continuous in t with probability one for Holder function $H_t$ of exponent $\beta$.

ON THE RADIUS OF CONVERGENCE OF SOME NEWTON-TYPE METHODS IN BANACH SPACES

  • Argyros, Ioannis K.;Hilout, Said
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.219-230
    • /
    • 2011
  • We determine the radius of convergence for some Newton{type methods (NTM) for approximating a locally unique solution of an equation in a Banach space setting. A comparison is given between the radii of (NTM) and Newton's method (NM). Numerical examples further validating the theoretical results are also provided in this study.

SEMILINEAR NONLOCAL DIFFERENTIAL EQUATIONS WITH DELAY TERMS

  • Jeong, Jin-Mun;Cheon, Su Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.627-639
    • /
    • 2013
  • The goal of this paper is to obtain the regularity and the existence of solutions of a retarded semilinear differential equation with nonlocal condition by applying Schauder's fixed point theorem. We construct the fundamental solution, establish the H$\ddot{o}$lder continuity results concerning the fundamental solution of its corresponding retarded linear equation, and prove the uniqueness of solutions of the given equation.

Lp (p ≥ 1) SOLUTIONS OF MULTIDIMENSIONAL BSDES WITH TIME-VARYING QUASI-HÖLDER CONTINUITY GENERATORS IN GENERAL TIME INTERVALS

  • Lishun, Xiao;Shengjun, Fan
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.667-684
    • /
    • 2020
  • The objective of this paper is solving multidimensional backward stochastic differential equations with general time intervals, in Lp (p ≥ 1) sense, where the generator g satisfies a time-varying Osgood condition in y, a time-varying quasi-Hölder continuity condition in z, and its ith component depends on the ith row of z. Our result strengthens some existing works even for the case of finite time intervals.

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.