• Title/Summary/Keyword: Gut health

Search Result 288, Processing Time 0.03 seconds

Antimicrobials, Gut Microbiota and Immunity in Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The use of antimicrobials will be soon removed due to an increase of occurrence of antibiotic-resistant bacteria or ionophore-resistant Eimeria species in poultry farms and consumers' preference on drug-free chicken meats or eggs. Although dietary antimicrobials contributed to the growth and health of the chickens, we do not fully understand their interrelationship among antimicrobials, gut microbiota, and host immunity in poultry. In this review, we explored the current understanding on the effects of antimicrobials on gut microbiota and immune systems of chickens. Based on the published literatures, it is clear that antibiotics and antibiotic ionophores, when used singly or in combination could influence gut microbiota. However, antimicrobial effect on gut microbiota varied depending on the samples (e.g., gut locations, digesta vs. mucosa) used and among the experiments. It was noted that the digesta vs. the mucosa is the preferred sample with the results of no change, increase, or decrease in gut microbiota community. In future, the mucosa-associated bacteria should be targeted as they are known to closely interact with the host immune system and pathogen control. Although limited, dietary antimicrobials are known to modulate humoral and cell-mediated immunities. Ironically, the evidence is increasing that dietary antimicrobials may play an important role in triggering enteric disease such as gangrenous dermatitis, a devastating disease in poultry industry. Future work should be done to unravel our understanding on the complex interaction of host-pathogen-microbiota-antimicrobials in poultry.

Serum Cholesterol-lowering Effect of Fermented Milk and Effect of Intestinal Microflora Composition on Function of Fermented Milk (발효유의 혈중 콜레스테롤 조절 기능과 발효유 기능성에 대한 장내 균총 구성의 영향)

  • Kim, Yujin;Yoon, Yohan;Lee, Soomin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • Fermented milk has been developed with its functionalities, and its health-promoting ability has been spotlighted due to its relationship with diseases such as cancer, cardiovascular disease, and diabetes, and gut microbiota. As national burden of cardiovascular disease increases over time, there is a need to prevent hypercholesterolemia. To achieve that, gut microbiota, which is altered by host's diet and environment, plays important roles in lowering cholesterol in the blood. Moreover, fermented milk may be effective as a cholesterol-lowering agent by altering gut microbiota composition. Gut microbiota may alter not only functions of the fermented milk but also bio-accessibility of functional materials. These results suggested that gut microbiota composition influences the impact of fermented milk. Thus, we should understand how functional materials are degraded by gut microbiota and absorbed into the gut.

Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease

  • Moon, Yuseok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.4
    • /
    • pp.221-228
    • /
    • 2016
  • The gastrointestinal exposome represents the integration of all xenobiotic components and host-derived endogenous components affecting the host health, disease progression and ultimately clinical outcomes during the lifespan. The human gut microbiome as a dynamic exposome of commensalism continuously interacts with other exogenous exposome as well as host sentineling components including the immune and neuroendocrine circuit. The composition and diversity of the microbiome are established on the basis of the luminal environment (physical, chemical and biological exposome) and host surveillance at each part of the gastrointestinal lining. Whereas the chemical exposome derived from nutrients and other xenobiotics can influence the dynamics of microbiome community (the stability, diversity, or resilience), the microbiomes reciprocally alter the bioavailability and activities of the chemical exposome in the mucosa. In particular, xenobiotic metabolites by the gut microbial enzymes can be either beneficial or detrimental to the host health although xenobiotics can alter the composition and diversity of the gut microbiome. The integration of the mucosal crosstalk in the exposome determines the fate of microbiome community and host response to the etiologic factors of disease. Therefore, the network between microbiome and other mucosal exposome would provide new insights into the clinical intervention against the mucosal or systemic disorders via regulation of the gut-associated immunological, metabolic, or neuroendocrine system.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

The Ingestion of Dietary Prebiotic Alternatives during Lactation Promotes Intestinal Health by Modulation of Gut Microbiota

  • Sangdon Ryu;Jeong Jae Lee;Daye Mun;Soo Rin Kim;Jeehwan Choe;Minho Song;Younghoon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1454-1461
    • /
    • 2022
  • Palm kernel expeller (PKE), a by-product of palm oil extraction, contains higher amounts of fiber than corn and soybean meal, but offers low energy density, protein value, and amino acid (AA) composition, limiting its use for swine. Recently however, it was reported that dietary fiber has a positive effect on the gut microbiota of the host, and therefore it is necessary to study the effect of PKE feeding on the intestinal microbiota of swine. In this study, we investigated the effects of supplementation with PKE in lactation diets on the gut microbiota composition of lactating sows and their litters. A total of 12 sows were randomly assigned to two dietary treatment groups in a completely randomized design. The treatments were a diet based on corn-soybean meal (CON) and CON supplemented with 20% of PKE. Sow and piglet fecal samples were collected before farrowing, on days 7 and 28 (weaning) after farrowing, and on days 7 and 28 (weaning) after farrowing, respectively, to verify gut microbiota composition by pyrosequencing analysis. The beta-diversity result showed a significant difference only in weaning-stage piglets, but dietary PKE altered the gut microbiota in sows by increasing the abundance of Lactobacillus compared with CON. In piglets, dietary PKE decreased the abundance of opportunistic pathogen Proteus and increased the abundance of potentially beneficial bacteria, such as Prevotellaceae and Prevotella. Our results can be helpful in developing feeding strategies and support the beneficial effects of dietary PKE to improve the gut health of animals.

Korean Red Ginseng extract treatment prevents post-antibiotic dysbiosis-induced bone loss in mice

  • Ho Jun Kang;Nicholas Chargo;Soumya Chennupati;Kerri Neugebauer;Jae Youl Cho;Robert Quinn;Laura R. McCabe;Narayanan Parameswaran
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.265-273
    • /
    • 2023
  • Background: The intestinal microbiota is an important regulator of bone health. In previous studies we have shown that intestinal microbiota dysbiosis, induced by treatment with broad spectrum antibiotics (ABX) followed by natural repopulation, results in gut barrier dysfunction and bone loss. We have also shown that treatment with probiotics or a gut barrier enhancer can inhibit dysbiosis-induced bone loss. The overall goal of this project was to test the effect of Korean Red Ginseng (KRG) extract on bone and gut health using antibiotics (ABX) dysbiosis-induced bone loss model in mice. Methods: Adult male mice (Balb/C, 12-week old) were administered broad spectrum antibiotics (ampicillin and neomycin) for 2 weeks followed by 4 weeks of natural repopulation. During this 4-week period, mice were treated with vehicle (water) or KRG extract. Other controls included mice that did not receive either antibiotics or KRG extract and mice that received only KRG extract. At the end of the experiments, we assessed various parameters to assess bone, microbiota and in vivo intestinal permeability. Results: Consistent with our previous results, post-ABX- dysbiosis led to significant bone loss. Importantly, this was associated with a decrease in gut microbiota alpha diversity and an increase in intestinal permeability. All these effects including bone loss were prevented by KRG extract treatment. Furthermore, our studies identified multiple genera including Lactobacillus and rc4-4 as well as Alistipes finegoldii to be potentially linked to the effect of KRG extract on gut-bone axis. Conclusion: Together, our results demonstrate that KRG extract regulates the gut-bone axis and is effective at preventing dysbiosis-induced bone loss in mice.

Insights into the Gut Microbiota of Freshwater Shrimp and Its Associations with the Surrounding Microbiota and Environmental Factors

  • Zhao, Yanting;Duan, Cuilan;Zhang, Xu-xiang;Chen, Huangen;Ren, Hongqiang;Yin, Ying;Ye, Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.946-956
    • /
    • 2018
  • The gut microbiota of aquatic animals plays a crucial role in host health through nutrient acquisition and outcompetition of pathogens. In this study, on the basis of the high-throughput sequencing of 16S rRNA gene amplicons, we examined the bacterial communities in the gut of freshwater shrimp (Macrobrachium nipponense) and in their living environments (sediment and pond water) and analyzed the effects of abiotic and biotic factors on the shrimp gut bacterial communities. High bacterial heterogeneity was observed in the freshwater shrimp gut samples, and the result indicated that both the surrounding bacterial community and water quality factors (particularly dissolved oxygen and temperature) could affect the shrimp gut bacterial community. Despite the observed heterogeneity, 57 genera, constituting 38-99% of the total genera in each of the 40 shrimp gut samples, were identified as the main bacterial population in the gut of M. nipponense. In addition, a high diversity and abundance of lactic acid bacteria (26 genera), which could play significant roles in the digestion process in shrimp, were observed in the shrimp gut samples. Overall, this study provides insights into the gut bacterial communities of freshwater shrimp and basic information for shrimp farming regarding the application of probiotics and disease prevention.

The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway

  • Hui Tang;Hanmei Li;Dan Li;Jing Peng;Xian Zhang;Weitao Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1213-1227
    • /
    • 2023
  • Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.

Immune Disorders and Its Correlation with Gut Microbiome

  • Hwang, Ji-Sun;Im, Chang-Rok;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2012
  • Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.