References
- Backhed F. 2011. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58: 44-52. https://doi.org/10.1159/000328042
- Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. 2008. Evolution of mammals and their gut microbes. Science 320: 1647-1651. https://doi.org/10.1126/science.1155725
- Angelakis E, Armougom F, Million M, Raoult D. 2012. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 7: 91-109. https://doi.org/10.2217/fmb.11.142
- Khan I, Yasir M, Azhar EI, Kumosani T, Barbour EK, Bibi F, et al. 2014. Implication of gut microbiota in human health. CNS Neurol. Disord. Drug Targets 13: 1325-1333. https://doi.org/10.2174/1871527313666141023153506
- Schnabl B, Brenner DA. 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146: 1513-1524. https://doi.org/10.1053/j.gastro.2014.01.020
- Grigorescu I, Dumitrascu DL. 2016. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol. (Bucharest) 12: 206-214. https://doi.org/10.4183/aeb.2016.206
- Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, et al. 2014. Rapid changes in the gut microbiome during human evolution. Proc. Natl. Acad. Sci. USA 111: 16431-16435. https://doi.org/10.1073/pnas.1419136111
- Jacobs J, Braun J. 2014. Host genes and their effect on the intestinal microbiome garden. Genome Med. 6: 119. https://doi.org/10.1186/s13073-014-0119-x
- Konya T, Koster B, Maughan H, Escobar M, Azad MB, Guttman DS, et al. 2014. Associations between bacterial communities of house dust and infant gut. Environ. Res. 131: 25-30. https://doi.org/10.1016/j.envres.2014.02.005
- Sullam KE, Essinger SD, Lozupone CA, O'Connor MP, Rosen GL, Knight R, et al. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21: 3363-3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x
- Kohl KD, Yahn J. 2016. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18: 1561-1565. https://doi.org/10.1111/1462-2920.13255
- Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255-1262. https://doi.org/10.1126/science.1224203
- Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10: 497-506. https://doi.org/10.1038/nrmicro2795
- Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4: 102-112. https://doi.org/10.1038/nrmicro1341
- Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, et al. 2016. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ. Microbiol. 18: 4739-4754. https://doi.org/10.1111/1462-2920.13365
- Gibson DJ, Ely JS, Collins SL. 1999. The core-satellite species hypothesis provides a theoretical basis for Grime's classification of dominant, subordinate, and transient species. J. Ecol. 87: 1064-1067. https://doi.org/10.1046/j.1365-2745.1999.00424.x
- Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA. 2014. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8: 2369-2379. https://doi.org/10.1038/ismej.2014.68
- Otani S, Mikaelyan A, Nobre T, Hansen LH, Kone NGA, Sorensen SJ, et al. 2014. Identifying the core microbial community in the gut of fungus-growing termites. Mol. Ecol. 23: 4631-4644. https://doi.org/10.1111/mec.12874
- Dishaw LJ, Flores-Torres J, Lax S, Gemayel K, Leigh B, Melillo D, et al. 2014. The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS One 9: e93386. https://doi.org/10.1371/journal.pone.0093386
- Wong ACN, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7: 1922-1932. https://doi.org/10.1038/ismej.2013.86
- Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. 2016. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18: 2103-2116. https://doi.org/10.1111/1462-2920.13318
- Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
- Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL. 2006. The role of probiotics in aquaculture. Vet. Microbiol. 114: 173-186. https://doi.org/10.1016/j.vetmic.2006.01.009
- Liu H, Liu M, Wang B, Jiang K, Jiang S, Sun S, et al. 2010. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp (Marsupenaeus japonicus). Chin. J. Oceanol. Limnol. 28: 808-814. https://doi.org/10.1007/s00343-010-9101-7
- Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N. 2014. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9: e91853. https://doi.org/10.1371/journal.pone.0091853
- Rahman NMA, Fu HT, Sun SM, Qiao H, Jin S, Bai HK, et al. 2016. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase. Genet. Mol. Res. 15: DOI: 10.4238/gmr.15038541.
- Tzeng T-D, Pao Y-Y, Chen P-C, Weng FC-H, Jean WD, Wang D. 2015. Effects of host phylogeny and habitats on gut microbiomes of oriental river prawn (Macrobrachium nipponense). PLoS One 10: e0132860. https://doi.org/10.1371/journal.pone.0132860
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
- Jiang X-T, Peng X, Deng G-H, Sheng H-F, Wang Y, Zhou H-W, et al. 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66: 96-104. https://doi.org/10.1007/s00248-013-0238-8
- Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, et al. 2013. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8: e60802. https://doi.org/10.1371/journal.pone.0060802
- Kim D-U, Lee H, Kim H, Kim S-G, Ka J-O. 2016. Dongia soli sp. nov., isolated from soil from Dokdo, Korea. Antonie Van Leeuwenhoek 109: 1397-1402. https://doi.org/10.1007/s10482-016-0738-x
- Baik KS, Hwang YM, Choi J-S, Kwon J, Seong CN. 2013. Dongia rigui sp. nov., isolated from freshwater of a large wetland in Korea. Antonie Van Leeuwenhoek 104: 1143-1150. https://doi.org/10.1007/s10482-013-0036-9
- Rahalkar M, Bahulikar RA, Deutzmann JS, Kroth PG, Schink B. 2012. Elstera litoralis gen. nov., sp nov., isolated from stone biofilms of Lake Constance, Germany. Int. J. Syst. Evol. Microbiol. 62: 1750-1754. https://doi.org/10.1099/ijs.0.026609-0
- Ye L, Amberg J, Chapman D, Gaikowski M, Liu W-T. 2014. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J. 8: 541-551. https://doi.org/10.1038/ismej.2013.181
- Prewitt L, Kang Y, Kakumanu ML, Williams M. 2014. Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb. Ecol. 68: 212-221. https://doi.org/10.1007/s00248-014-0396-3
- Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, et al. 2016. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7: 13699. https://doi.org/10.1038/ncomms13699
- Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. 2015. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505: 435-445. https://doi.org/10.1016/j.scitotenv.2014.10.012
- De Schryver P, Vadstein O. 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8: 2360-2368. https://doi.org/10.1038/ismej.2014.84
- Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. 2016. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10: 1998-2009. https://doi.org/10.1038/ismej.2015.253
- Dec M, Puchalski A, Nowaczek A, Wernicki A. 2016. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogens. Int. Microbiol. 19: 57-67.
- Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, et al. 2016. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6: 24340. https://doi.org/10.1038/srep24340
- Ray AK, Ghosh K, Ringo E. 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquac. Nutr. 18: 465-492. https://doi.org/10.1111/j.1365-2095.2012.00943.x
- Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, et al. 2007. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5: 1574-1586.
- Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, et al. 2016. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol. 49: 275-285. https://doi.org/10.1016/j.fsi.2015.12.047
- Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, et al. 2011. Microbial manipulations to improve fish health and production - a Mediterranean perspective. Fish Shellfish Immunol. 30: 1-16. https://doi.org/10.1016/j.fsi.2010.08.009
- Geng X, Dong XH, Tan BP, Yang QH, Chi SY, Liu HY, et al. 2012. Effects of dietary probiotic on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Aquac. Nutr. 18: 46-55. https://doi.org/10.1111/j.1365-2095.2011.00875.x
- Kuda T, Masuko Y, Kawahara M, Kondo S, Nemoto M, Nakata T, et al. 2016. Bile acid-lowering properties of Lactobacillus plantarum Sanriku-SU3 isolated from Japanese surfperch fish. Food Biosci. 14: 41-46. https://doi.org/10.1016/j.fbio.2016.02.004
- Kuda T, Noguchi Y, Ono M, Takahashi H, Kimura B, Kamita R, et al. 2014. In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu, Japan. J. Funct. Foods 11: 269-277. https://doi.org/10.1016/j.jff.2014.09.017
- Russo P, Iturria I, Luz Mohedano M, Caggianiello G, Rainieri S, Fiocco D, et al. 2015. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biotechnol. 99: 3479-3490. https://doi.org/10.1007/s00253-014-6351-x
- Liu J, Yan Q, Luo F, Shang D, Wu D, Zhang H, et al. 2015. Acute cholecystitis associated with infection of Enterobacteriaceae from gut microbiota. Clin. Microbiol. Infect. 21: 851.e19.
- Cabello FC. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8: 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
- Tang Y, Tao P, Tan J, Mu H, Peng L, Yang D, et al. 2014. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns. Int. J. Mol. Sci. 15: 13663-13680. https://doi.org/10.3390/ijms150813663
- Montiel Quezel-Guerraz N, Marin Arriaza M, Carrillo Avila JA, Sanchez-Yebra Romera WE, Martinez-Lirola MJ, Indal TBG. 2010. Evaluation of the Speed-oligo (R) Mycobacteria assay for identification of Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. Diagn. Microbiol. Infect. Dis. 68: 123-131. https://doi.org/10.1016/j.diagmicrobio.2010.06.006
- Abass NA, Suleiman KM, El Jalii IM. 2010. Differentiation of clinical Mycobacterium tuberculosis complex isolates by their GyrB polymorphism. Indian J. Med. Microbiol. 28: 26-29. https://doi.org/10.4103/0255-0857.58724
- Manfredi R, Nanetti A, Ferri M, Mastroianni A, Coronado OV, Chiodo F. 1999. Flavobacterium spp. organisms as opportunistic bacterial pathogens during advanced HIV disease. J. Infect. 39: 146-152. https://doi.org/10.1016/S0163-4453(99)90007-5
- Toranzo AE, Magarinos B, Romalde JL. 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246: 37-61. https://doi.org/10.1016/j.aquaculture.2005.01.002
- Tall A, Teillon A, Boisset C, Delesmont R, Touron-Bodilis A, Hervio-Heath D. 2012. Real-time PCR optimization to identify environmental Vibrio spp. strains. J. Appl. Microbiol. 113: 361-372. https://doi.org/10.1111/j.1365-2672.2012.05350.x
- Rungrassamee W, Klanchui A, Maibunkaew S, Karoonuthaisiri N. 2016. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J. Invertebr. Pathol. 133: 12-19. https://doi.org/10.1016/j.jip.2015.11.004
- Xiong J, Dai W, Li C. 2016. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl. Microbiol. Biotechnol. 100: 6947-6954. https://doi.org/10.1007/s00253-016-7679-1
- Ringo E, Olsen RE, Gifstad TO, Dalmo RA, Amlund H, Hemre GI, et al. 2010. Prebiotics in aquaculture: a review. Aquac. Nutr. 16: 117-136. https://doi.org/10.1111/j.1365-2095.2009.00731.x
- Attramadal KJK, Thi My Hanh T, Bakke I, Skjermo J, Olsen Y, Vadstein O. 2014. RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae. Aquaculture 432: 483-490. https://doi.org/10.1016/j.aquaculture.2014.05.052
- Attramadal KJK, Salvesen I, Xue R, Oie G, Storseth TR, Vadstein O, et al. 2012. Recirculation as a possible microbial control strategy in the production of marine larvae. Aquac. Eng. 46: 27-39. https://doi.org/10.1016/j.aquaeng.2011.10.003
Cited by
- Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-018-37042-3
- Assessment of the Dynamics of Microbial Community Associated with Tetraselmis suecica Culture under Different LED Lights Using Next-Generation Sequencing vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1910.10046
- BALOs Improved Gut Microbiota Health in Postlarval Shrimp ( Litopenaeus vannamei ) After Being Subjected to Salinity Reduction Treatment vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.01296
- Combining proteogenomics and metaproteomics for deep taxonomic and functional characterization of microbiomes from a non-sequenced host vol.6, pp.None, 2020, https://doi.org/10.1038/s41522-020-0133-2
- Fine-scale succession patterns and assembly mechanisms of bacterial community of Litopenaeus vannamei larvae across the developmental cycle vol.8, pp.1, 2018, https://doi.org/10.1186/s40168-020-00879-w
- Microbial diversity and ecology of crustaceans: influencing factors and future perspectives vol.39, pp.None, 2018, https://doi.org/10.1016/j.cofs.2021.01.001
- Dissolution-based uptake of CeO2 nanoparticles by freshwater shrimp - a dual-radiolabelling study of the fate of anthropogenic cerium in water organisms vol.8, pp.7, 2018, https://doi.org/10.1039/d1en00264c