• Title/Summary/Keyword: Gurson-Tvergaard-Needleman model

Search Result 9, Processing Time 0.026 seconds

Analysis of crack growth by modified Gurson model (수정 Gurson 모델을 이용한 균열성장 해석)

  • Yang Seung-Yong;Goo Byeong-choon;Kim Jae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.702-709
    • /
    • 2004
  • Modified Gurson model (Gurson-Tvergaard-Needleman model) was used to analyze crack growth in M(T) and C(T) specimens. A commercial finite element code ABAQUS/Explicit is used to account for total failure of material point by cavity coalescence, and crack growth was simulated by finite element extinction. Crack growth resistance curve was obtained by calculating J-integral. Crack growth under residual stress was investigated.

  • PDF

Numerical simulation of material damage for structural steels S235JR and S355J2G3

  • Kossakowski, Pawel G.;Wcislik, Wiktor
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.133-146
    • /
    • 2018
  • The paper discusses numerical analysis of tensile notched specimens with the use of Gurson - Tvergaard - Needleman (GTN) material model. The analysis concerned S235JR and S355J2G3 steel grades, subjected to medium stress state triaxiality ratio, amounting 0.739. A complete procedure for FEM model preparation was described, paying special attention to the issue of determining material constants in the GTN model. An example of critical void volume fraction ($f_c$) experimental determination procedure was presented. Finally, the results of numerical analyses were discussed, indicating the differences between steel grades under investigation.

Study on Formability Enhancement of Electromagnetic Forming using Gurson Plasticity Material Model (Gurson모델을 사용한 전자기성형의 성형성 개선에 대한 연구)

  • Kim, Jeong;Song, Woojin;Kang, Beomsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.98-104
    • /
    • 2013
  • The effect of the tool-sheet interaction on formability enhancement in electromagnetic forming is investigated using FEM. A free bulging and a conical forming die with 0.7mm AL1050 sheet are used to evaluate damage evolution based on Gurson-Tvergaard-Needleman plasticity material model. The impact between the tool and sheet results in complex stress states including compressive hydrostatic stresses, which leads to a suppression of void growth and restrain ascending void volume fraction of the sheet. Therefore, the damage suppression due to the tool-sheet interaction can be the main factor contributing to the increased formability in the electromagnetic forming process.

Large Deformation Inelastic Analysis of API-X80 Steel Linepipes (API-X80 강재 라인파이프의 대변형 비선형 해석)

  • Lee, Seung-Jung;Yoon, Young-Cheol;Cho, Woo-Yeon;Yu, Seong-Mun;Zi,, Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • We simulated large deformation and inelastic behavior of API-X80 steel linepipes using nonlinear finite element method. Gurson-Tvergaard-Needleman(GTN) model is employed for the development of the constitutive model of the steel. The GTN model is implemented in the form of the user-supplied material subroutine(UMAT) for the commercial software of ABAQUS. To calibrate the model parameters, we simulated the behavior of the uniaxial tension test using ABAQUS equipped with the developed GTN model. Using the set of the model parameters, we were able to capture the characteristics of the plastic buckling of API-X80 steel linepipes.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels (API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석)

  • Oh, Chang-Kyun;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Evaluation of Crack Length and Thickness Effects of Fracture Specimen using Damage Mechanics (손상역학에 근거한 파괴시편의 균열길이와 두께 영향 평가)

  • Chang Yoon-Suk;Lee Tae-Rin;Choi Jae-Boong;Seok Chang-Sung;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.116-123
    • /
    • 2006
  • During the last two decades, many researchers investigated influences of stress triaxiality on ductile fracture for various specimens and structures. With respect to a transferability issue, the local approach reflecting micro-mechanical specifics is one of effective methods to predict constraint effects. In this paper, the applicability of the local approach was examined through a series of finite element analyses incorporating modified GTN (Gurson-Tvergaard-Needleman) and Rousselier models as well as fracture toughness tests. To achieve this goal, fracture resistance (J-R) curves of several types of compact tension (CT) specimens with various crack length, with various thickness and with/without 20% side- grooves were estimated. Then. the constraint effects were examined by comparing the numerically estimated J-R curves with experimentally determined ones. The assessment results showed that the damage models might be used as useful tool for fracture toughness estimation and both the crack length and thickness effects should be considered for realistic structural integrity evaluation.