• Title/Summary/Keyword: Guidance Performance

Search Result 739, Processing Time 0.025 seconds

Perception of the importance and educational needs of job performance competency of National Competency Standards based vocational education curriculum in technical specialized high schools and meister high schools (NCS 기반 직업교육과정 도입에 따른 공업계열 특성화고·마이스터고 교사의 직무수행능력 중요도 및 교육적 요구에 대한 인식)

  • Hahm, Seung-Yeon
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.69-88
    • /
    • 2016
  • The study tried to investigate perception of the importance and educational needs of job performance competency of National Competency Standards based vocational education curriculum in technical specialized high schools and meister high schools. For this, the survey was conducted targeting 269 specialty subject teachers in technical specialized high schools and meister high schools. And the results are as follow: First, job performance competency were divided into 5 categories(curriculum guidance, school life guidance, class management, extraordinary activities and administrative duties) and 34 sub-categories. Second, higher importance values were curriculum guidance, extraordinary activities and school life guidance. Higher educational needs values were curriculum guidance, extraordinary activities and administrative duties in categories. Third, higher importance values were construction and reconstruction of NCS learning modules, organization and manage of NCS based vocational education curriculum, guide of the new laws and employment, student records manage, research activities of NCS, hands-on-background training, NCS projects in sub-categories. Fourth, the results show that the NCS experienced teachers more highly evaluated the importance and educational needs of the job performance competency than the NCS inexperienced teachers did.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

Formation Flight and Collision Avoidance for Multiple UAVs using Concept of Elastic Weighting Factor

  • Kang, Seunghoon;Choi, Hyunjin;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2013
  • In this paper, the guidance law for formation flight and collision avoidance of multiple Unmanned Aerial Vehicle (UAV)s is proposed. To construct the physically comprehensible guidance law for formation flight, the virtual structure approach is used. To develop a guidance law for collision avoidance considering both other UAVs and unknown static obstacles, a geometric approach using information such as a relative position vector is utilized. Through the Lyapunov theorem, the stability of the proposed guidance law is proved. To combine guidance commands, the concept of the elastic weighting factor inspired by the elastic behavior of shape memory polymer, which tends to regain its original shape after deformation, is introduced. By using the concept of elastic weighting factor, multiple UAVs are able to cope actively with the situation of a collision between both UAVs and static obstacles during the formation flight. To verify the performance of the proposed method, numerical simulations are performed.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

Guidance Law to Control Impact-Time-And-Angle Using Time-Varying Gains (시변 이득을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Lee, Jin-Ik;Jeon, In-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.633-639
    • /
    • 2007
  • This paper presents a new homing guidance law based on well-known BPN to achieve an impact time constraint as well as an impact angle constraint. The guidance commands are synthesized by introducing an additional command to control impact-time. The structure of the additional command has a BPN-based loop multiplied by time-varying gains being proportional to the time difference between the required time-to-go and the estimated time-to-go by BPN. Moreover, the proposed homing loop converges to BPN as the time-to-go error is reduced. The performance of the proposed guidance law is evaluated by the computer simulations.

Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase

  • Han, Seungyeop;Bai, Ji Hoon;Hong, Seong-Min;Roh, Heekun;Tahk, Min-Jea;Yun, Joongsup;Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.709-718
    • /
    • 2017
  • This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.

Homing Guidance Law and Spiral Descending Path Design for UAV Automatic Landing (무인항공기 자동착륙을 위한 나선형 강하궤적 및 종말유도 설계)

  • Yoon, Seung-Ho;Kim, H.-Jin;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • This paper presents a spiral descending path and a landing guidance law for net-recovery of a fixed-wing unmanned aerial vehicle. The net-recovery landing flight is divided into two phases. In the first phase, a spiral descending path is designed from an arbitrary initial position to a final approaching waypoint toward the recovery net. The flight path angle is controlled to be aligned to the approaching direction at the end of the spiral descent. In the second phase, the aircraft is guided from the approaching waypoint to the recovery net using a pseudo pursuit landing guidance law. Six degree-of-freedom simulation is performed to verify the performance of the proposed landing guidance law.

Rendezvous Maneuver of an Unmanned Aerial Vehicle Using Lyapunov-based Variable Pursuit Guidance (르야프노프 기반 가변 추적유도법칙을 이용한 무인항공기 랑데부 기동 기법)

  • Kim, Mingu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.765-772
    • /
    • 2020
  • A lot of studies to overcome the limitation of flight time have been studied, since the requirement of complicated mission achievement of aircraft including Unmanned Aerial Vehicles(UAVs) has been increased. The fuel limitation could bring about not enough flight time to accomplish missions. For this reason, the rendezvous maneuver is required to accomplish aerial refueling missions. The rendezvous guidance law based on variable pursuit guidance is designed using Lyapunov stability theory in this study. Numerical simulation is performed to demonstrate the performance of the proposed rendezvous guidance.

A Container Stacking System for the Mobile Harbor (모바일하버에 적용할 컨테이너 적재 유도 시스템)

  • Kim, In-Su;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.672-678
    • /
    • 2010
  • The purpose of this study is to develop a stacking guidance system (SGS) of containers in the mobile harbor (MH). A mobile harbor is a floating structure especially designed for loading and unloading containers from and to a large container ship. A novel stacking guidance system was proposed for unloading the container in an effective way against possible vibrations of the floating body. The guidance system works as an aid for loading containers with a wider opening for easier stacking of a container into a moving storage cell due to waves. In order to determine the most effective inclination angle of the cell-guide, this study performed the dynamic analysis of the SGS equipped in the MH subject to fluctuations of the sea. The motions of the guidance system and a container loaded were calculated using ADAMS. The simulation results of the contact force between the two rigid bodies showed that a desirable angle of the cell-guide should be around 20 degrees from the vertical. This proposed SGS can considerably reduce the loading and unloading time, and will enhance the performance of the MH.

A Study on Problems and Improvement of Disaster Prevention Technology Guidance(Focused on construction disaster) (재해예방 기술지도의 문제점과 개선방안에 관한 연구 (건설 재해를 중심으로))

  • Roh, Tae-Woo;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.47-55
    • /
    • 2016
  • Recently, industrial accidents rate has been gradually decreasing due to the development of safety management methods, but until now, the accident rate in the construction sector is higher than other industries. Large-scale construction sites are operating systematic safety systems to reduce industrial accidents. However, small and medium sized construction sites do not have systematic safety system and lack safety management ability, so that disaster is not reduced compared with large scale construction site. As a result, disaster prevention technology instruction system has been implemented to reduce the disasters of small and medium scale construction sites. However, in the case of a small construction site less than 2 billion won, there is little decrease in the accident rate, and in some cases, the accident rate increases. After the technical guidance system has been implemented, it is necessary to identify the performance and problems of implementation and to improve its effectiveness. In this study, we suggest the improvement plan to improve the efficiency of the technical guidance system by analyzing the problems and actual conditions of technical guidance operation in small and medium sized construction work sites.