• Title/Summary/Keyword: Growth of Vegetation

Search Result 710, Processing Time 0.048 seconds

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Initial responses of vegetation regeneration after strip clear cutting in secondary Korean red pine (Pinus densiflora) forest in Samcheok, Gangwon-do, South Korea (강원도 삼척 지역에서 소나무 이차림의 대상 벌채에 따른 초기 식생 재생 반응)

  • Jeong, Se-Yeong;Cho, Yong-Chan;Byun, Bong-Kyu;Kim, Hye-Jin;Bae, Kwan-Ho;Kim, Hyun-Seop;Kim, Jun-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.785-790
    • /
    • 2015
  • As an alternative to large-scale clear cutting silviculture, strip clear cutting (SC) is being considered as a system compatible with ecological conservation and forest regeneration. In South Korea, application and effectiveness of SCC in varying forest types were rarely found. In this study, under the subject of strip clear cutting lands of pinus densiflora forest at Samcheok, Gangwon-do Province, the developmental aspect of low vegetation prior to and after deforestation and the correlation between environmental factor and pine regeneration were analyzed. The cover rate of understory vegetation was appeared to be increased after deforestation and rapidly increased two years after deforestation, and it was evaluated to be affected by vigorous tree species and photophilic species. From the perspective of relative importance value, Quercus mongolica, Artemisia keiskeana, and Rubus crataegifolius that influence the cover rate showed the inclination of continuous growth. The diversity of species showed increment inclination as well due to introduction and settlement of early transient species. As a result of analyzing the correlation between vegetation and environmental factor and generation of pine tree size, the soil exposure rate, intensity of light, and canopy openness showed positive relationship, and the understory vegetation cover and woody debris cover rate showed negative relationship.

The Analysis of Vegetation Characteristics According to Revetment Structure at Rural Small Streams (농촌지역 소하천의 제방형태에 따른 식생특성 분석연구)

  • Kim, Mi-Heui;Kang, Banghun;Kong, Min-Jae;Jeong, Myeong-Cheol;Son, Jin-Kwan
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.359-369
    • /
    • 2015
  • Stream ecosystems are highly valued natural resources, however, stream environments are currently under threat in several respects. We evaluated vegetation and ecological characteristics according to different revetment types. The distribution of vegetation differed with revetment type, with a 42~45 taxa found in natural revetments, and 23~38 taxa in vertical revetments. Thus, natural revetments host more diverse vegetation than vertical revetments. We also found more plants belonging to the families Labiatae and Cyperaceae growing in natural revetments than in vertical revetments. We proposed that habitat space be apportioned to introduce annual plants as part of stream restoration projects. And, we identified 7 families and 18 taxa of naturalized plants, majority taxa were either biennial or perennial. Moreover, naturalized ratio was higher in vertical(14.3%) than natural(12.1%), we proposed a plan to promote and improve natural streams and revetments. Furthermore, we applied a waterfront evaluation method developed by the Natural Resources Conservation Service of the USDA-NRCS, which confirmed that stream health can be improved in most regions by controlling naturalized plants and ensuring shrub and tree growth. We adopted a new method to remove naturalized plants and establish natural revetments to ensure shrub and tree growth to aid in small-stream restoration and improvement. In future studies, we hope to develop methods for small-stream restoration projects in rural areas.

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

Assessment of Lodged Damage Rate of Soybean Using Support Vector Classifier Model Combined with Drone Based RGB Vegetation Indices (드론 영상 기반 RGB 식생지수 조합 Support Vector Classifier 모델 활용 콩 도복피해율 산정)

  • Lee, Hyun-jung;Go, Seung-hwan;Park, Jong-hwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1489-1503
    • /
    • 2022
  • Drone and sensor technologies are enabling digitalization of agricultural crop's growth information and accelerating the development of the precision agriculture. These technologies could be able to assess damage of crops when natural disaster occurs, and contribute to the scientification of the crop insurance assessment method, which is being conducted through field survey. This study was aimed to calculate lodged damage rate from the vegetation indices extracted by drone based RGB images for soybean. Support Vector Classifier (SVC) models were considered by adding vegetation indices to the Crop Surface Model (CSM) based lodged damage rate. Visible Atmospherically Resistant Index (VARI) and Green Red Vegetation Index (GRVI) based lodged damage rate classification were shown the highest accuracy score as 0.709 and 0.705 each. As a result of this study, it was confirmed that drone based RGB images can be used as a useful tool for estimating the rate of lodged damage. The result acquired from this study can be used to the satellite imagery like Sentinel-2 and RapidEye when the damages from the natural disasters occurred.

Estimation of Rice Growth Using RADARSTA-2 SAR Images at Seosan Region

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.237-244
    • /
    • 2013
  • Radar remote sensing is appropriate for monitoring rice because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. We examined the temporal variations of backscattering coefficients with full polarization. Backscattering coefficients for all polarizations increased until Day Of Year (DOY 222) and then decreased along with Leaf Area Index (LAI), fresh weight, and Vegetation Water Content (VWC). Vertical transmit and Vertical receive polarization (VV)-polarization backscattering coefficients were higher than Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients in early rice growth stage and HH-polarization backscattering coefficients were higher than VV-polarization backscattering coefficients after effective tillering stage (DOY 186). Correlation analysis between backscattering coefficients and rice growth parameters revealed that HH-polarization was highly correlated with LAI, fresh weight, and VWC. Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients.

Fertilization Effects on Soil Properties, Understory Vegetation Structure and Growth of Pinus densiflora Seedlings Planted after Forest Fires (산불피해지에 식재 조림된 소나무임분의 시비처리에 따른 소나무 묘목의 생장, 토양특성 및 하층식생 구조의 변화)

  • Won, Hyung-kyu;Lee, Yoon Young;Jeong, Jin-Hyun;Koo, Kyo-Sang;Lee, Choong-Hwa;Lee, Seung-Woo;Jeong, Yong-Ho;Kim, Choonsig;Kim, Hyungho
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.334-341
    • /
    • 2006
  • This study was to investigate the growth of planted red pine (Pinus densiflora S. et. Z.) seedling, soil properties and understory vegetation structure after fertilizer treatments [unfertilized plot (control), CF plot (Combination Fertilizer), UF plot (Urea Formaldehyde Fertilizer)] in a Pinus densiflora stand planted after the forest fires in Gosung, Gangwon province. The height growth rates of seedlings in four years were 264% in unfertilized, 404% in CF, and 388% in UF plots, respectively. The root collar diameters were increased 340% in unfertilized, 454% in CF, and 427% in UF plots, respectively. No significant changes occurred in soil total nitrogen and potassium ion ($K^+$) with the fertilization. However, available $P_2O_5$, content in the soil surface (0-15 cm) increased with the fertilizer application. Soil organic matter increased significantly with fertilizer treatments, while gradual decrease occurred in unfertilized plots. Sodium ion ($Na^-$) decreased in all sites. Soil pH, CEC, calcium ion ($Ca^{2+}$) and magnesium ion ($Mg^{2+}$) contents were not significantly different among treatments. Although Shannon's species diversity index and species richness in understory vegetation did not change with fertilizer treatments, vegetation cover rates in forest floor increased significantly with the fertilization. These results suggest that the increase of pine seedling growth and vegetation cover rates with fertilization could enhance soil stabilization in forest tire areas.

Response of Structural, Biochemical, and Physiological Vegetation Indices Measured from Field-Spectrometer and Multi-Spectral Camera Under Crop Stress Caused by Herbicide (마늘의 제초제 약해에 대한 구조적, 생화학적, 생리적 계열 식생지수 반응: 지상분광계 및 다중분광카메라를 활용하여)

  • Ryu, Jae-Hyun;Moon, Hyun-Dong;Cho, Jaeil;Lee, Kyung-do;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1559-1572
    • /
    • 2021
  • The response of vegetation under the crop stress condition was evaluated using structural, biochemical, and physiological vegetation indices based on unmanned aerial vehicle (UAV) images and field-spectrometer data. A high concentration of herbicide was sprayed at the different growth stages of garlic to process crop stress, the above ground dry matter of garlic at experimental area (EA) decreased about 46.2~84.5% compared to that at control area. The structural vegetation indices clearly responded to these crop damages. Spectral reflectance at near-infrared wavelength consistently decreased at EA. Most biochemical vegetation indices reflected the crop stress conditions, but the meaning of physiological vegetation indices is not clear due to the effect of vinyl mulching. The difference of the decreasing ratio of vegetation indices after the herbicide spray was 2.3% averagely in the case of structural vegetation indices and 1.3~4.1% in the case of normalization-based vegetation indices. These results meant that appropriate vegetation indices should be utilized depending on the types of crop stress and the cultivation environment and the normalization-based vegetation indices measured from the different spatial scale has the minimized difference.

Yearly Estimation of Rice Growth and Bacterial Leaf Blight Inoculation Effect Using UAV Imagery (무인비행체 영상 기반 연차 간 벼 생육 및 흰잎마름병 병해 추정)

  • Lee, KyungDo;Kim, SangMin;An, HoYong;Park, ChanWon;Hong, SukYoung;So, KyuHo;Na, SangIl
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.75-86
    • /
    • 2020
  • The purpose of this study is to develop a technology for estimating rice growth and damage effect according to bacterial leaf blight using UAV multi-spectral imagery. For this purpose, we analyzed the change of aerial images, rice growth factors (plant height, dry weight, LAI) and disease effects according to disease occurrence by using UAV images for 3 rice varieties (Milyang23, Sindongjin-byeo, Saenuri-byeo) from 2017 to 2018. The correlation between vegetation index and rice growth factor during vegetative growth period showed a high value of 0.9 or higher each year. As a result of applying the growth estimation model built in 2017 to 2018, the plant height of Milyang23 showed good error withing 10%. However, it is considered that studies to improve the accuracy of other items are needed. Fixed wing unmanned aerial photographs were also possible to estimate the damage area after 2 to 4 weeks from inoculation. Although sensing data in the multi-spectral (Blue, Green, Red, NIR) band have limitations in early diagnosis of rice disease, for rice varieties such as Milyang23 and Sindongjin-byeo, it was possible to construct the equation of infected leaf area ratio and rice yield estimation using UAV imagery in early and mid-September with high correlation coefficient of 0.8 to 0.9. The results of this study are expected to be useful for farming and policy support related to estimating rice growth, rice plant disease and yield change based on UAV images.

The Long-term Growth Characteristics of Vegetation Base Materials Include Spent Coffee Ground (커피박이 포함된 식생기반재의 장기생육특성)

  • Lee, Jundae;Yeon, Yonghum;Seong, Siyung;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.45-53
    • /
    • 2016
  • At present, coffee consumption amount is annually on the rise in Korea, which results in about 0.27 million tons of coffee waste annually. They are mostly classified as food waste and deserted with moisture contained, being a serious environmental issue. Existing slope greening techniques, which are vegetation based soil-media hydroseeding measures, have problems such as lack of coherence, dryness or lack of organic matters. Therefore in order to assess usability of Spent Coffee Ground (SCG), medium-to long-term growth test was conducted under the indoor and outdoor conditions. According to the result of growth test, when SCG was mixed with existing base materials, moisturizing power increased and organic matter content was reinforced, promoting germination and growth in a medium term. Among others, under the condition when supply of water was discontinued, withering rate was lower than existing base materials and diverse phenomena resulting from lack of nutrition decreased. Therefore, SCG as a waste organic matter with abundant nitrogen has the characteristic of inhibiting early growth but was found to have a quality favorable to long-term growth resulting from water containing ability and the supply of organic mater and is judged to be a material to replace or complement existing base materials.