• Title/Summary/Keyword: Growth factor-gradient

Search Result 45, Processing Time 0.045 seconds

Effects of Different Culture Conditions on In Vitro Production of Bovine Embryos (체외배양 조건이 소 체외수정란의 생산에 미치는 효과)

  • 조성근;노규진;이정규;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.15 no.3
    • /
    • pp.271-277
    • /
    • 2000
  • This study was conducted to establish the optimal culture conditions for in vitro production of bovine embryos derived from slaughter house ovaries. Cumulus-oocyte- complexes (COCs) collected by aspiration from follicles of 2~7 mm in diameter were matured in Ham's F-10 medium supplemented with 0.01 $\mu\textrm{g}$/m1 epidermal growth factor (EGF) at 39$^{\circ}C$ in a humidified atmosphere of 5% $CO_2$in air. After 24 hrs of culture, the oocytes were co-cultured with epididymal sperm selected off by Percoll-density gradient in TALP medium for 24 hrs. The presumptive zygotes were cultured in HECM-6 medium for 3 d post-insemination, and followed by cultured in TCM199 medium until 7 to 10d post-insemination. The cultures were compared of their cleavage and development into later stage in culture medium by additions of different protein sources (PVA, BSA and BCS) and by different embryo density. The rates of cleavage and development rates into blastocyst were not significantly (P<0.05) different among the culture media containing with BSA (75.0% and 40.5%), BCS (76.7% and 38.0%) and PVA (72.5% and 42.2%), respectively. Significantly (P<0.05) higher blastocysts rates were obtained in culturing of 30 and 40 embryos in each 50$\mu$l droplets of culture medium than in 5, 10 and 20 embryos. These results indicate that the optimal density of embryos is 30~40 embryos in a 50$\mu$l droplet of culture medium. Furthermore there is no effect of different protein sources on early embryonic development.

  • PDF

The Cell Survival and Differentiation after Transplantation, Which Harvest from Adult Rat Brain by High-speed Centrifugation Method

  • Kim, Jong-Tae;Yoo, Do-Sung;Woo, Ji-Hyun;Huh, Pil-Woo;Cho, Kyung-Sock;Kim, Dal-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • Objective : Many recent reports have shown that the mature mammalian brain harbors multipotent stem cells, rendering the brain capable of generating new neurons and glia throughout life. Harvested stem cells from an adult rat are transplanted in order to evaluate the cell survival and differentiation. Methods : Using a percoll gradient with a high speed centrifugation method, we isolate neural stem/progenitor cells were isolated from the subventricular zone[SVZ] of a syngeneic adult Fisher 344 rats brain. For 14days expansion, the cultured cells comprised of a heterogeneous population with the majority of cells expressing nestin and/or GFAP. After expanding the SVZ cells in the presence of basic fibroblast growth factor-2, and transplanting then into the hippocampus of normal rats, the survival and differentiation of those cells were examined. For transplantation, the cultured cells were labeled with BrdU two days prior to use. In order to test their survival, the cells were transplanted into the dorsal hippocampus of normal adult Fisher 344 rats. Results : The preliminary data showed that at 7days after transplantation, BrdU+ transplanted cells were observed around the injection deposition sites. Immuno-fluorescent microscopy revealed that the cells co-expressed BrdU+ and neuronal marker ${\beta}$-tubulin III. Conclusion : The data demonstrate that the in vitro expanded SVZ cells can survive in a heterotypic environment and develop a neuronal phenotype in the neurogenic region. However more research will be needed to examine the longer survival time points and quantifying the differentiation in the transplanted cells in an injured brain environment.

An experimental study on the evaluation of discharge capacity for vertical plastic drain board (연직배수재의 통수능력평가를 위한 실험적 연구)

  • Kim, Joonseok;Lee, Kangil
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to obtain the area for development with good ground condition. Various kinds of vertical drain technologies such as sand drain, sand compaction pile, packed drain, PVD are commercially available to improve the soft ground. Discharge capacity is the important factor of vertical drains. However, under field conditions, discharge capacity is changed with various reasons, such as soil condition, overburden pressure, and so on. In this paper, the experimental study was carried out to estimate the discharge capacity of four different types of PBD, PBD for double core PBD, deep type PBD, X type PBD, general type PBD. Characteristics of the discharge capacity for the surcharge load and hydraulic gradient were analysed. The double core PBD was excellent for discharge capacity in this study.

Length-Weight Relations and Condition Factor (K) of Zacco platypus Along Trophic Gradients in Reservoir Ecosystems (인공호의 부영양화에 따른 피라미(Zacco platypus) 개체군의 전장-체중 관계 및 비만도 지수)

  • Ko, Dae-Geun;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.174-189
    • /
    • 2012
  • The objective of this study was to determine the weight-length relations and condition factor (K) of Zacco platypus, along the trophic gradients from oligotrophic to eutrophic state in six reservoir ecosystems ($B_aR$, $Y_yR$, $J_yR$, $G_pR$, $Y_dR$, and $M_sR$), during 2008~2010. The species was selected as a sentinel species for the study, due to its wide distribution and wide trophic gradient. The analysis of trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (Chl-a), indicated that reservoirs of $Y_yR$ and $B_aR$ were classified as to be in an oligotrophic state (30~40), the $J_yR$ and $G_pR$ as mesotrophic (40~50), and the $Y_dR$ and $M_sR$ as eutrophic state (50~70). Total 47 species and 26,226 individuals were sampled from 6 reservoirs and sensitive species dominated in the oligotrophic reservoirs ($Y_yR$ and $B_aR$). In the mean time, the tolerant speciesdominated the community in the mesotrophic ($J_yR$ and $G_pR$) and eutrophic ($Y_dR$ and $M_sR$) reservoirs. Regression analysis of body weight, against the total length, indicated that the regression coefficient (b value) was lower in the oligotrophic reservoir (2.77~2.79) than the mesotrophic (3.07~3.17) and eutrophic reservoirs (3.15~ 3.21). This result suggests that the population growth rate Zacco platypus reflected the trophic gradients of the reservoirs. The analysis of condition factor (K) against the total length showed positive slopes (b>3.0) in mesotrophic and eutrophic reservoirs, and a negative slope (b<3.0) in oligotrophic reservoir. The variation of the regression slope of "b" in Z. platypus was accounted for 79.7% [$b=0.012{\times}TSI(TP)+2.395$, p=0.017] by the variation of TSI (TP) and 82.2% [$b=0.013{\times}TSI(Chl-a)+2.36$, p=0.013] by the variation of TSI (Chl-a). The proportion of DELT abnormality increased as the trophic state increases in the reservoirs. The overall data suggest that the growth of the fish populations, based on the length-weight relations and condition factor, reflected the trophic state of nutrient and phytoplankton biomass of the reservoir waters. Thus, in spite of the tolerant characteristics of Z. platypus, hypertrophic states might negatively affect the health of the population.

The Effects of Experimental Warming on Seed Germination and Growth of Two Oak Species (Quercus mongolica and Q. serrata) (온난화 처리가 신갈나무(Quercus mongolica)와 졸참나무(Q. serrate)의 종자발아와 생장에 미치는 영향)

  • Park, Sung-ae;Kim, Taekyu;Shim, Kyuyoung;Kong, Hak-Yang;Yang, Byeong-Gug;Suh, Sanguk;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.210-220
    • /
    • 2019
  • Population growth and the increase of energy consumption due to civilization caused global warming. Temperature on the Earth rose about $0.7^{\circ}C$ for the last 100 years, the rate is accelerated since 2000. Temperature is a factor, which determines physiological action, growth and development, survival, etc. of the plant together with light intensity and precipitation. Therefore, it is expected that global warming would affect broadly geographic distribution of the plant as well as structure and function ecosystem. In order to understand the effect of global warming on the ecosystem, a study about the effect of temperature rise on germination and growth in the plant is required necessarily. This study was carried out to investigate the effects of experimental warming on the germination and growth of two oak species(Quercus mongolica and Q. serrata) in temperature gradient chamber(TGC). This study was conducted in control, medium warming treatment($+1.7^{\circ}C$; Tm), and high warming treatment ($+3.2^{\circ}C$; Th) conditions. The final germination percentage, mean germination time and germination rate of two oak species increased by the warming treatment, and the increase in Q. serrata was higher than that in Q. mongolica. Root collar diameter, seedling height, leaf dry weight, stem dry weight, root dry weight, and total biomass were the highest in Tm treatment. Butthey were not significantly different in the Th treatment. In the Th treatment, Q. serrata had significantly higher H/D ratio, S/R ratio, and low root mass ratio (RMR) compared with control plot. Q. mongolica had lower RMR and higher S/R ratio in the Tm and Th treatments compared with control plot. Therefore, growth of Q. mongolica are expected to be more vulnerable to warming than that of Q. serrata. The main findings of this study, species-specific responses to experimental warming, could be applied to predict ecosystem changes from global warming. From the result of this study, we could deduce that temperature rise would increase germination of Q. serrata and Q. mongolica and consequently contribute to increase establishment rate in the early growth stage of the plants. But we have to consider diverse variables to understand properly the effects that global warming influences germination in natural condition. Treatment of global warming in the medium level increased the growth and the biomass of both Q. serrata and Q. mongolica. But the result of treatment in the high level showed different aspects. In particular, Q. mongolica, which grows in cooler zones of higher elevation on mountains or northward in latitude, responded more sensitively. Synthesized the results mentioned above, continuous global warming would function in stable establishment of both plants unfavorably. Compared the responses of both sample plants on temperature rise, Q. serrata increased germination rate more than Q. mongolica and Q. mongolica responded more sensitively than Q. serrata in biomass allocation with the increase of temperature. It was estimated that these results would due to a difference of microclimate originated from the spatial distribution of both plants.

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Invasion of Korean Pine Seedlings Originated from Neighbour Plantations into the Natural Mature Deciduous Broad-leaved Forest in Gwangneung, Korea (광릉 천연활엽수 성숙림에서 주변 인공림으로부터 잣나무 치수의 침입 정착)

  • Kang, Ho Sang;Lim, Jong-Hwan;Chun, Jung Hwa;Lee, Im Kyun;Kim, Young Kul;Lee, Jae Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.107-114
    • /
    • 2007
  • Establishments of the seedlings inside the natural forest from adjacent artificial forests would be an important factor in forest stand dynamics. This study was conducted to see the invasion of Korean pine (Pinus koraiensis) seedlings which is not native in this region, into the natural deciduous broad-leaved forest in Gwangneung, Korea. There is no mother tree at the I ha study site while the number of naturally regenerated P. koraiensis seedlings was 345 trees and 56% of them were clumped with more than two seedlings at each point. Applying the image segmentation method to IKONOS satellite image of January, 2003, the distance from the center of 1 ha study site to the nearest mother tree and plantation of Korean pine were 200 m and 270 m, respectively. The average height and root-collar diameter of the seedlings were 34 em and 7 mm, respectively and the age of 207 seedlings (60%) were below 5 years old. Most abundant range of soil moisture gradient and LAl (leaf area index) were from 16 to 20% and those of LAI were from 3.1 to 3.5. To understand the dynamics and seed dispersal pattern of Korean pine in the Gwangneung natural deciduous broad-leaved forests, additional studies not only long-term monitoring of growth and mortality of naturally regenerated Korean pine seedlings but also application of stable isotope analysis and molecular genetic techniques was recommended.

Comparison of Machine Learning-Based Greenhouse VPD Prediction Models (머신러닝 기반의 온실 VPD 예측 모델 비교)

  • Jang Kyeong Min;Lee Myeong Bae;Lim Jong Hyun;Oh Han Byeol;Shin Chang Sun;Park Jang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • In this study, we compared the performance of machine learning models for predicting Vapor Pressure Deficits (VPD) in greenhouses that affect pore function and photosynthesis as well as plant growth due to nutrient absorption of plants. For VPD prediction, the correlation between the environmental elements in and outside the greenhouse and the temporal elements of the time series data was confirmed, and how the highly correlated elements affect VPD was confirmed. Before analyzing the performance of the prediction model, the amount and interval of analysis time series data (1 day, 3 days, 7 days) and interval (20 minutes, 1 hour) were checked to adjust the amount and interval of data. Finally, four machine learning prediction models (XGB Regressor, LGBM Regressor, Random Forest Regressor, etc.) were applied to compare the prediction performance by model. As a result of the prediction of the model, when data of 1 day at 20 minute intervals were used, the highest prediction performance was 0.008 for MAE and 0.011 for RMSE in LGBM. In addition, it was confirmed that the factor that most influences VPD prediction after 20 minutes was VPD (VPD_y__71) from the past 20 minutes rather than environmental factors. Using the results of this study, it is possible to increase crop productivity through VPD prediction, condensation of greenhouses, and prevention of disease occurrence. In the future, it can be used not only in predicting environmental data of greenhouses, but also in various fields such as production prediction and smart farm control models.

Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season (밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향)

  • Chuloh Cho;Han-yong Jeong;Yurim Kim;Jinhee Park;Kyeong-Hoon Kim;Kyeong-Min Kim;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.234-241
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is a major staple foods and is in increasing demand in the world. The elevated temperature caused by changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15 and 25℃, and it is necessary to study the physiological characteristic of wheat according to elevated temperatures. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in temperature gradient tunnels (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions: T0 (control, near ambient temperature), T1 (T0+1℃), T2 (T0+2℃), (T0+2℃), T3 (T0+3℃). The period from sowing to heading stage accelerated and the number of grains per spike and grain yield reduced under T3 condition compared with those under T0 condition. Grain filling rate and grain maturity also accelerated with elevated temperature (T3). The increase in temperature led to the increase in protein contents, whereas decreased the total starch contents. These results are consistent with the decreased expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during the late grain filling stage. Taken together, our results suggest that the increase in temperature (T3) led to the decrease in grain yield by regulating the number of grains/spike, whereas increased the protein content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. In addition, our results provide a useful physiological information on the response of wheat to heat stress.

Effects of Regular Exercise and L-Arginine Intake on Abdominal Fat, GH/IGF-1 Axis, and Circulating Inflammatory Markers in the High Fat Diet-Induced Obese Aged Rat (규칙적인 운동과 L-arginine의 섭취가 고지방식이 유도 비만 노화생쥐의 복부지방량, GH/IGF-1 axis 및 혈관염증지표에 미치는 영향)

  • Park, Sok;Sung, Ki-Woon;Lee, Jin;Lee, Cheon-Ho;Lee, Young-Jun;Yoo, Young-June;Park, Kyoung-Shil;Min, Byung-Jin;Shin, Yong-Sub;Kim, Jung-Suk;Jung, Hun
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.516-523
    • /
    • 2012
  • The purpose of this study was to investigate the effect of exercise and/or L-arginine on abdominal fat, IGF-1 on GH/IGF-1 axis, fibrinogen, and PAI-1 in aged and obese rats. Male Sprague-Dawley rats were treated with a D-galactose aging inducing agent (50 mg/kg) given intraperitoneally for 12 weeks. Thirty-two male Sprague-Dawley rats were treated and divided into four groups: aging-high fat diet group (AG+HF), AG+HF with L-arginine intake group (AG+LA), AG+HF with exercise group (AG+EX), and AG+EX with L-arginine intake group (AG+LA+EX). The experimental rats underwent treadmill training (60 min/day, 6 days/week at 0% gradient) for 12 weeks. L-arginine was given orally (150 mg/kg/day) for 12 weeks. After the experiment, blood was collected from the left ventricle and abdominal fat was extracted. The results showed that GH was significantly increased in AG+EX and AG+AL+EX. IGF-1 was significantly increased in both the AG+AL+EX and AG+EX group ($p$<0.05), while fibrinogen and PAI-1 were not significantly different among the groups. Abdominal fat was significantly decreased in the AG+LA, AG+EX, and AG+LA+EX groups ($p$<0.05) compared with the AG+HF group. In conclusion, this study suggests that exercise alone or L-arginine alone or a combination not only increases the GH and IGF-1 concentration, but also decreases the abdominal fat mass.