Invasion of Korean Pine Seedlings Originated from Neighbour Plantations into the Natural Mature Deciduous Broad-leaved Forest in Gwangneung, Korea

광릉 천연활엽수 성숙림에서 주변 인공림으로부터 잣나무 치수의 침입 정착

  • Kang, Ho Sang (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lim, Jong-Hwan (Department of Forest Environment, Korea Forest Research Institute) ;
  • Chun, Jung Hwa (Department of Forest Environment, Korea Forest Research Institute) ;
  • Lee, Im Kyun (Department of Forest Environment, Korea Forest Research Institute) ;
  • Kim, Young Kul (Department of Forest Environment, Korea Forest Research Institute) ;
  • Lee, Jae Ho (Nature and Ecology Research Department, National Institute of Environmental Research)
  • 강호상 (서울대학교 농업생명과학연구원) ;
  • 임종환 (국립산림과학원 산림환경부) ;
  • 천정화 (국립산림과학원 산림환경부) ;
  • 이임균 (국립산림과학원 산림환경부) ;
  • 김영걸 (국립산림과학원 산림환경부) ;
  • 이재호 (국립환경과학원 자연생태과)
  • Received : 2007.01.31
  • Accepted : 2007.02.23
  • Published : 2007.03.31

Abstract

Establishments of the seedlings inside the natural forest from adjacent artificial forests would be an important factor in forest stand dynamics. This study was conducted to see the invasion of Korean pine (Pinus koraiensis) seedlings which is not native in this region, into the natural deciduous broad-leaved forest in Gwangneung, Korea. There is no mother tree at the I ha study site while the number of naturally regenerated P. koraiensis seedlings was 345 trees and 56% of them were clumped with more than two seedlings at each point. Applying the image segmentation method to IKONOS satellite image of January, 2003, the distance from the center of 1 ha study site to the nearest mother tree and plantation of Korean pine were 200 m and 270 m, respectively. The average height and root-collar diameter of the seedlings were 34 em and 7 mm, respectively and the age of 207 seedlings (60%) were below 5 years old. Most abundant range of soil moisture gradient and LAl (leaf area index) were from 16 to 20% and those of LAI were from 3.1 to 3.5. To understand the dynamics and seed dispersal pattern of Korean pine in the Gwangneung natural deciduous broad-leaved forests, additional studies not only long-term monitoring of growth and mortality of naturally regenerated Korean pine seedlings but also application of stable isotope analysis and molecular genetic techniques was recommended.

주변 인공림으로부터의 종자유입에 따른 치수발생현상은 향후 천연림의 임분동태의 향방에 매우 중요한 역할을 한다. 본 연구는 광릉 천연활엽수 성숙림내 천연갱신된 잣나무 치수의 침입과 이의 동태를 파악하기 위해 수행되었다. 조사지내에는 잣나무 성목이 분포하고 있지 않으나, 천연갱신된 잣나무 치수의 밀도는 ha당 총 345본으로 전체 치수의 56%가 2개 이상씩 모여서 분포하고 있었다. 2003년 1월 IKONOS 위성영상을 이용한 조사지와 주변 잣나무 성목 및 조림지까지의 거리를 조사한 결과, 잣나무 성목과는 최소 200m, 잣나무 조림지와는 최소 270m 이상 떨어진 것으로 나타났다. 천연갱신된 잣나무 치수의 평균 묘고와 근원경은 각각 34cm, 7mm 이었으며, 수령 5년 이하의 치수가 207본(60%)이었다. 잣나무 치수와 토양 수분 및 엽면적지수(LAI)와의 관계를 분석한 결과 토양수분은 16~20%, 엽면적지수는 3.1~3.5 구간에서 잣나무 치수의 분포가 가장 많았다. 광릉 천연활엽수림내 잣나무의 동태 및 종자 분산 경향을 파악하기 위해서는 앞으로 잣나무 치수의 생장과 고사율에 대한 장기적인 모니터링과 함께 방사성 동위원소와 분자유전학적 방법 등을 활용한 추가적인 연구도 필요할 것으로 판단된다.

Keywords

Acknowledgement

Grant : 지구환경변화에 대응한 장기생태연구

Supported by : 국립산림과학원

References

  1. 김영환,이돈구,강호상. 2005. 장백산지역 잣나무-활엽수 천연림 택벌 적지내 천연갱신 특성. 한국임학회지 94: 6-10
  2. 김지흥,양희문,김광택. 1999. 천연활엽수림의 세 가지 조림작업종에 따른 천연갱신 양상. 한국임학회지 88: 169-178
  3. 산림청. 2006. 임업통계연보. 제36호. 482p
  4. 송연희, 윤충원. 2006. 설악산 국립공원 잣나무 천연림의 군락유형 및 임분구조. 한국환경생태학회지 20: 29-40
  5. 이상훈. 2002. 백운산 지역 잣나무 및 낙엽송 인공림 내에서의 천연활엽수 발생과 생장 및 이에 관여하는 인자. 서울대학교 석사학위 논문. 53pp
  6. 이원섭. 2002. 자연발생한 잣나무 치수의 네가지 임상별 분포 및 생장. 강원대학교 박사학위 논문. 140pp
  7. 이재선, 송정호, 박문한, 한상억. 1999. 잣나무의 수형 조절 (III) -III영급 이하 인공림에서 잣과 목재 생산을 위한 수형-. 한국임학회지 88: 195-204
  8. 임주훈. 1989. 잣나무 천연 임분의 생태적 특성. 고려대학교 박사학위 논문. 95pp
  9. 전상근, 신만용, 정동준, 장용석, 김명수. 1999. 지역별 잣나무의 초기생장 특성과 미기후의 영향 -정기평균생장량과 미기후와의 관계-. 한국임학회지 88: 73-85
  10. 홍경락, 권영진, 정재민, 신창호, 홍용표, 강범룡. 2001. 점봉산 잣나무임분의 개체목 공간분포에 따른 유전구조. 한국임학회지 90: 43-54
  11. Akashi, N. 1997. Dispersion pattern and mortality of seeds and seedlings of Fagus crenata Blume in a cool temperate forest in western Japan. Ecological Research 12: 159-165 https://doi.org/10.1007/BF02523781
  12. Fleming, T.H. and Heithaus, E.R. 1981. Frugivorous bats, seed shadows and the structure of tropical forests. Biotropica 13: 45-53 https://doi.org/10.2307/2388069
  13. Griffith, A.B. and Forseth, I.N. 2002. Primary and secondary seed dispersal of a rare, tidal wetland annual, Aeschynomene virginica. Wetlands 22: 696-704 https://doi.org/10.1672/0277-5212(2002)022[0696:PASSDO]2.0.CO;2
  14. Hayashida, M. 1989. Seed dispersal by red squirrels and subsequent establishment of Korean pine. Forest Ecology and Management. 28: 115-129 https://doi.org/10.1016/0378-1127(89)90064-9
  15. He, T., Siegfried, L.L.K., Byron, B.L. Ben, P.M., Neal, J.E, and Enright, J. 2004. Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred limn a population allocation analysis of amplified fragment length polymorphism data. Molecular Ecology 13: 1099-1109 https://doi.org/10.1111/j.1365-294X.2004.02120.x
  16. Howe, H.F. and Westley, L.C. 1997. Ecology of Pollination and Seed Dispersal. pp. 262-283. In. M.J. Crawley ed. Plant Ecology 2nd ed. Blackwell Science
  17. Hyun, S.K. 1969. Intrinsic qualities, growth-potential, and adaptation of white pine in Asia (Pinus koraiensis and Pinus armandiii. International Symposium on Biology and Intemational Aspects of Rust Resistance of Forest Tree, Moscow, Idaho, U.S.A., August 17-24, 1969
  18. Jin, G., Xie, X., Tian, Y. and Kim, J.H. 2006. The pattem of seed rain in the broadleaved-Korean pine mixed forest of Xiaoxing'an mountains, China. Journal of Korean Forest Society 95: 621-627
  19. Kettig, R.L. and Landgrebe, D.A. 1976. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics 14: 19-26 https://doi.org/10.1109/TGE.1976.294460
  20. Lee, D.K. and Suh, S.J. 2005. Forest Restoration and Rehabilitation in Republic of Korea. pp. 383-396: In: J.A. Stanturf and Madsen, P. eds. Restoration of Boreal and Temperate Forests. CRC Press. U.S.A
  21. Lee, D.K., Kang, H.S. and Park, Y.D. 2004. Natural restoration of deforested woodlots in South Korea. Forest Ecology and Management 201: 23-32 https://doi.org/10.1016/j.foreco.2004.06.019
  22. Li, H.J. and Zhang, Z.B. 2003. Effect of rodents on acorn dispersal and survival of the Liaodong oak (Quercus liaotungensis Koidz.), Forest Ecology and Management 176: 387-396 https://doi.org/10.1016/S0378-1127(02)00286-4
  23. Li, J. 1986. The pattern and dynamics of Pinus koraiensis population. Journal of Northeast. Forestry Institution 14: 33-38. (in Chinese with English abstract)
  24. Lim, J.H. 1998. A Forest Dynamics Model Based on Topographically-Induced Heterogeneity in Solar Radiation and Soil Moisture on the Kwangneung Experimental Forest. Ph.D. Thesis, Seoul National University, Seoul. 145pp
  25. Lim, J.H., Shin, J.H., Jin, G.J., Chun, J.H. and Oh, J.S. 2003. Forest stand structure, site characteristics and carbon budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5: 101-109
  26. Man'ko, Y.I., Lee, D.K., Kang, H.S. and Nyam-Osor, B. 2004. State of forests and biodiversity conservation in Primorsky Krai, Russian Far East. Journal of Korean Forestry Society 93: 388-396
  27. Mirov, N.T. 1967. The Genus Pinus. The Ronald Press Company, New York, 602pp
  28. Mix, C., Arens, P.F.P., Ouborg, N.J. and Smulders, M.J.M. 2004. Isolation and characterization of highly polymorphic rnicrosatellite markers in Hypochaeris radicaia (Asteraceae). Molecular Ecology Notes 4: 656-658 https://doi.org/10.1111/j.1471-8286.2004.00773.x
  29. Oliver, C.D. and Larson, B.C. 1996. Forest Stand Dynamics. John Wiley & Sons, Inc. New York, 520pp
  30. Ouborg, N.J., Piquot, Y. and van Groenendael, J.M. 1999. Population genetics, molecular markers, and the study of dispersal in plants. Journal of Ecology 87: 551-568 https://doi.org/10.1046/j.1365-2745.1999.00389.x
  31. Pollux, B.J.A., de Jong, M., Steegh, A., Verbruggen, E. van Groenendael, J.M. and Ouborg, N.J. 2007. Reproductive strategy, clonal structure and genetic diversity in populations of the aquatic macrophyte Sparganium emersum in river systems. Molecular Ecology 16: 313-325 https://doi.org/10.1111/j.1365-294X.2006.03146.x
  32. Owston, P.W., Schlosser, W.E., Efremov, D.F. and Miner, C.L. 2000. Korean pine-broadleaved forests of the Far East: Proceedings from the International Conference. Khabarovsk, Russian Federation. October 1996. USDA Forest Service. Pacific Northwest Research Station PNW-GTR-487. 3l3pp
  33. Shin, J.H. 1989. Growth Architecture and Differentiation, in Tree Classes, Their Growth Strategies and Growth Model in Pinus koraiensis S. et Z. Plantations. Ph.D. Thesis
  34. Wang. B.C. and Smith, T.B. 2002. Closing the seed dispersal loop. Trends in Ecology and Evolution 17: 379-385 https://doi.org/10.1016/S0169-5347(02)02541-7
  35. Yeo, U.S. and Lee, D.K. 2006. Early regeneration of Fraxinus rhynchophylla in the understory of Larix kaempferi stands in response to thinning. Forestry 79: 167-176 https://doi.org/10.1093/forestry/cpl001