• Title/Summary/Keyword: Grouting Material

Search Result 187, Processing Time 0.028 seconds

A Study on the Waterproof Method to the Leakage Type of Underground Structure by Cement Grouting (지하구조물의 누수유형에 따른 시멘트그라우팅 방수기법에 관한 연구)

  • 천병식;최춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.181-196
    • /
    • 2001
  • 지하구조물에 있어서 누수사고의 빈번한 발생 및 상습화 경향에도 불구하고 현재 국내에서 사용되고 있는 누수보수방법은 누수유형에 관계없이 일괄적으로 동일한 처리방식으로 보수하는 상황으로서 지하구조물 누수에 대하여 누수 유형별로 보수방법을 달리하는 적극적인 해결방안의 모색이 필요하다. 따라서, 본 연구에서는 지하구조물의 누수보수에 있어서 방수 그라우트재의 공학적 특성을 파악하고 현장상황에 적합한 방수그라우팅 기법을 수립하여 누수유형별로 적용한 사례를 중심으로 적용성을 고찰하였다. 방수그라우팅 적용사례를 분석한 결과 지하구조물의 누수방지를 위하여 누수상황 및 누수유형에 따라 주입재의 배합비를 적절히 변화시켜 주입재와 현장상황에 적합한 방수그라우팅 기법을 병행 적용하는 것이 확실한 방수효과를 얻을 수 있으며, 주입목표구간에 대해 단계적으로 수회로 나누어 순차적인 그라우팅과 가능한 한 저압, 소량, 장시간에 걸쳐 주입하는 것이 방수그라우팅 효과를 증대시킬 수 있는 것으로 판단된다. 또한, 현장 적용결과로부터 기존 방수이론의 영향요소에 추가하여 물시멘트비, 주입재의 입경, 주입시간 및 주입량, 혼화재 사용여부, 주입차수 등에 대한 다양한 영향요소의 검토가 필요한 것으로 판단된다.

  • PDF

Application of Geosynthetic-Reinforced Structures for Railway (철도구조물에 적용되고 있는 토목섬유보강구조물의 현황)

  • Shin, Eun-Chul;Lee, Joong-Hwa
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.337-349
    • /
    • 2009
  • In recent years, the cutting and banking areas along the railway in Korea are exposed to the erosion problem during every year. The reinforcement is a composite construction material in which the strength of engineering fill is enhanced by the addition of strong tensile reinforcement in many different types. Various problems of the railway infrastructure have occurred due to the differential settlement, frost heaving, mud pumping, lack of bearing capacity, partially loss of embankment. In advanced countries, railway roadbed reinforcement is applied to solve these problems on railway roadbed. This paper presents the solution of such problems by means of the engineering works incorporated with railway reinforcement infrastructures such as geotextile bag method, existing grouting method, geocell, reinforced earth, soil nailing and so on.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

A Study on the Properties of Grout Materials Based on Cement Type (시멘트계 주입재의 주입특성에 관한 연구)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.229-236
    • /
    • 2002
  • In this study, the characteristics of chemical grouting, such as solidification, penetrability, were analyzed experimentally by grain size of grout materials and permeability, relative density of the ground. For evaluating applicability of grout material, solidification tests and permeability tests were peformed. From the results of the tests, effective solidification ratio and penetrability ratio of Micro Cement were 75% and 86% respectively when ground permeability was in the range of 10$^{-4}$ to 10$^{-2}$cm/sec. On the other hand, effective solidification ratio and penetrability ratio of Ordinary Portland Cement (OPC) were both lower than 50%. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of Micro Cement is much superior to that of the other materials. The results of the grouting tests in the hydrodynamic ground show that the solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, the solidifcation effect of long gel-time grout material is very poor because most grout materials are outflowed.

Monitoring of grout material injected under a reservoir using electrical and electromagnetic surveys (전기비저항 및 전자탐사를 이용한 저수지 하부에 주입된 그라우트 재료의 모니터링)

  • Suzuki, Koichi;Oyama, Takahiro;Kawashima, Fumiharu;Tsukada, Tomoyuki;Jyomori, Akira
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.69-79
    • /
    • 2010
  • In order to reduce leakage from a reservoir, a large amount of cement milk (grout) was injected from boreholes drilled around the shores of the reservoir, and monitored to establish the infiltration of cement milk into the bedrock under the reservoir. From laboratory tests using rock core samples, it was revealed that the resistivity of cement milk is much lower than that of the groundwater at this location. Therefore, it was expected that the resistivity of the zones filled with cement milk would be significantly reduced. Geophysical surveys are expected to be suitable methods to check the effectiveness of grouting in improving the water-retaining performance of a reservoir. DC electrical surveys (seven in total) and two Controlled Source Audio-frequency Magneto-Telluric (CSAMT) surveys were conducted along survey lines in the reservoir to monitor the infiltration of cement milk during the grouting. Extremely low resistivity zones ($10\;{\Omega}m$ or less) were observed in resistivity sections obtained by 2D inversion. The zones are inferred to be fractured zones filled with cement milk. In sections showing the rate of change of resistivity, three zones that showed significant change showed gradual expansion to deeper parts as the grouting progressed. These zones correspond to highly permeable zones detected by Lugeon tests at grout boreholes. We have confirmed that it is possible to measure the resistivity change by DC electrical and CSAMT surveys from the surface of the reservoir. It seems that such monitoring results could be reflected in future grouting plans.

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.

Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.361-368
    • /
    • 2019
  • This study aims to evaluate the applicability of a grout material that is mixed with carbon fiber, biogrout, ground granulated blast furnace slag (GGBS) powder and cement. Uniaxial compressive strength tests were performed on homo-gel samples at days of 1, 3, 7, 14 and 28. In addition, the variation of permeability with the mixing ratios was measured. Based on the uniaxial compressive strength test, it was confirmed that the uniaxial compressive strength increased by 1.2times when carbon fiber increased by 1%. In addition, as a result of the permeability test, it was found that when the GGBS increased by 20%, the permeability coefficient decreased by about 1.5times. Therefore, the developed grout material can be used as a cutoff grouting material in the field due to its strength and cut-off effect.

Evaluation of Engineering Properties in Synthetic Polymer-Silica Sol Grout (합성폴리머 실라카졸 그라우트의 공학적 특성 평가)

  • Jang, Seong-Min;Jung, Hyuk-Sang;Kim, Jeong-Han;Min, Byung-Chan;Lee, Byeong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • The engineering characteristics of synthetic polymer-silica sol, which has the effect of reducing leakage, was evaluate and compared with typical grouting material, the water glass-based SGR injection material in this study. The result of the laboratory tests on strength and durability about the synthetic polymer-silica sol showed more than twice as high as LW-based injection materials in uniaxial compressive strength, significantly lower values in shrinkage rate and permeability. The result of pH was less than 8.5 (the drinking water quality standard). As a result of the leaching test, the Na2O elution amount of the synthetic polymer-silica sol was measured to be 3 to 4 times smaller than that of the water glass grout. These results be assumed that the synthetic polymer-silica sol has better durability and permeability than those of the typical water glass-based grout.

A Study on the Application Review of Hwang-toh for Ground Grouting Based on Smart Construction (스마트건설기반에서의 지반그라우팅을 위한 황토의 적용성 검토)

  • Taese Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.21-27
    • /
    • 2024
  • Limestone-based cement has been well utilized as a construction material throughout the world, but as civil and architectural development accelerates, limestone will gradually be depleted. The use of cement, the main material for civil engineering and construction, is rapidly increasing in modern times, and the depletion of high-quality limestone resources will be greater than expected in the future. Therefore, if existing resources can be used as construction materials to replace cement based on accumulated technology, the depleting limestone resources can be utilized for a longer period of time. In order to determine whether Hwang-toh, which forms about 10% of the surface layer of Korea's terrain, can be partially utilized as a construction material, this study aims to develop a Hwang-toh accelerator agent and prove whether it can be applied to the field through indoor tests.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.