• Title/Summary/Keyword: Groundwater colloid

Search Result 14, Processing Time 0.034 seconds

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River (낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석)

  • Kim, Bo-A;Koh, Dong-Chan;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

Chemical Characteristics and Water Dispersible Colloid Content of Jeju Citrus Orchard Soils (제주도 감귤원 토양의 화학적 특성과 물 분산성 콜로이드 함량)

  • Oh, Sang-Sil;Chung, Jong-Bae;Hyun, Hae-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Water-dispersible colloids are suspected to facilitate transport of contaminants to groundwater. This study evaluated some soil chemical properties in relation to the stability of colloids in soils of Jeju citrus orchards. Thirty surface soil samples were collected, and pH, organic matter content oxalate-extractable Al and Fe contents, and water-dispersible colloid content were measured. In soils of higher pH, water-dispersible colloid contents were higher. The stability of colloids was found to be significantly promoted at pH above 5$\sim$6. Since organic matter can act as a flocculant organic matter content significantly enhanced the colloid stability. In soils of less than 5% organic C, water-dispersible colloid content was expected to be significantly higher. In soils of higher oxalate-extractable Al and Fe contents, colloids remaining in suspension were lower. This indicated that amorphous oxides and hydroxides play important stabilizing roles in soil structure and can stabilize soil clay against dispersion. Therefore in soils of higher pH, lower organic matter, and lower amorphous clay minerals, the stability of water-dispersible colloids and the potential of colloid-mediated transport of organic chemicals to groundwater could be higher.

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Solubility Studies of Uranyl Hydrolysis Precipitates (우라닐 가수분해물의 용해도 연구)

  • Park, Yong-Joon;Pyo, Hyung-Ryul;Kim, Won-Ho;Chun, Kwan-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.599-606
    • /
    • 1996
  • The effects of chemical species in groundwater on the solubility of the uranyl hydrolysis precipitates formed at pH 6.4 and 9.7 were investigated. Based on the chemical composition of the groundwater, the synthetic groundwater was prepared. The colloid-free (separated) groundwater was also prepared by removal of both organic and inorganic colloids from the sampled groundwater. Solubilities of precipitates formed in the hydrolysis of uranyl ion in groundwater, separated groundwater, synthetic groundwater and 0.1 M NaCl solution were measured over neutral to alkaline pH range, and especially, the effect of the anions and cations found in groundwater on the solubility was investigated. Solubility in groundwater was approximately two orders of magnitude greater than that in 0.1 M NaCl solution. Soubililties of uranyl hydrolysis precipitates formed at pH 9.7 and 6.4 were compared in groundwater and synthetic groundwater. Solubilities of the precipitates formed at different pH were found to be in the same order of magnitude in groundwater and synthetic groundwater, however the uranyl hydolysis precipitates formed at higher pH values showed a tendency of higher solubility.

  • PDF

VARIATIONS OF CONTAMINANT RETARDATION FACTOR IN THE PRESENCE OF TWO MOBILE COLLOIDS

  • Kim, Song-Bae;Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.115-119
    • /
    • 2001
  • Contaminant retardation factor is derived from the colloidal and contaminant transport equations for a four-phase porous medium: an aqueous phase, two mobile colloidal phases, and a solid matrix. It is assumed that the contaminant sorption to solid matrix and colloidal particles and the colloidal deposition on solid matrix follow the linear isotherms. The behavior of the contaminant retardation factor in response to the change of model parameters is examined employing the experimental data of Magee et al. (1991) and Jenkins and Lion (1993). In the four-phase system, the contaminant retardation factor is determined by both the contaminant association with solid matrix and colloidal particles and the colloidal deposition on solid matrix. The contaminant mobility is enhanced when the affinity of contaminants to mobile colloids increases. In addition, as the affinity of colloids to solid matrix decreases, the contaminant mobility increases.

  • PDF

Fate and Transport of Viruses in Soil and Groundwater Environments (토양.지하수 환경에서 바이러스의 거동)

  • Park, Jeong-Ahn;Yoon, Seo-Young;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.504-515
    • /
    • 2012
  • Groundwater is widely used as drinking water supplies around the world. However, microbial contamination of groundwater is a serious environmental problem that degrades drinking water quality and poses a great threat to human health. Among the pathogenic microorganisms such as viruses, bacteria, and protozoa, viruses are not readily removed during transport through soils, having high mobility in groundwater environment due to their smaller size compared to bacteria and protozoa. Studies regarding the fate and transport of viruses in soils and aquifers are necessary to determine the vulnerability of groundwater to microbial contamination and to secure safe drinking water sources. Also, these studies provide important information to establish the regulations and policies related to public health. This review paper presented the field and laboratory studies conducted for the fate and transport of viruses in subsurface environments. Also, the paper provided the factors affecting the fate and transport of viruses, the characteristics of bacteriophages used for virus studies, and virus transport model/colloid filtration theory. Based on this review work, future researches should be performed actively to set up the viral protection zone for the protection of groundwater from viral contamination sources. Especially, the researches should be focused on the development of mathematical models to calculate the setback distance and travel time for the viral protection zone along with the accumulation of information related to the model parameters.

Sorption Characteristics of Uranium on Goethite and Montmorillonite under Biogeochemical Reducing Conditions (생지화학적 환원조건에서 우라늄의 침철석 및 몬모릴로나이트에 대한 수착 특성)

  • Lee, Seung Yeop;Cho, Hye-Ryun;Baik, Min Hoon;Jung, Euo Chang;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.263-270
    • /
    • 2012
  • Two kinds of uranium species, oxidized uranium(VI) and reduced uranium(IV), were prepared to be interacted with goethite and montmorillonite to identify sorption characteristic of uranium species, which are very sensitive to the redox-reaction. The reduced uranium was prepared by diluting a substantial uranium(IV) that was concomitantly produced during a sulfate reduction via a sulfate-reducing bacterium. The sorption amount of uranium(IV) by the minerals was relatively lower than that of uranium(VI) because the aqueous uranium(IV) had fine colloidal forms to cause its weak adsorption onto the mineral surfaces. We found that the uranium(IV) phase has a nano-colloid character by the transmission electron microscope, suggesting that the uranium species possibly migrating with the flow of groundwater in underground environments can be the colloidal uranium(IV) as well as the ionic uranium(VI).

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.