DOI QR코드

DOI QR Code

Chemical Characteristics and Water Dispersible Colloid Content of Jeju Citrus Orchard Soils

제주도 감귤원 토양의 화학적 특성과 물 분산성 콜로이드 함량

  • Oh, Sang-Sil (Jeju Provincial Institute of Health and Environment) ;
  • Chung, Jong-Bae (Dept. of Agricultural Chemistry, Daegu University) ;
  • Hyun, Hae-Nam (Faculty of Horticultural Life Science, Cheju National University)
  • 오상실 (제주도 보건환경연구원) ;
  • 정종배 (대구대학교 생명환경학부) ;
  • 현해남 (제주대학교 원예생명과학부)
  • Published : 2002.06.30

Abstract

Water-dispersible colloids are suspected to facilitate transport of contaminants to groundwater. This study evaluated some soil chemical properties in relation to the stability of colloids in soils of Jeju citrus orchards. Thirty surface soil samples were collected, and pH, organic matter content oxalate-extractable Al and Fe contents, and water-dispersible colloid content were measured. In soils of higher pH, water-dispersible colloid contents were higher. The stability of colloids was found to be significantly promoted at pH above 5$\sim$6. Since organic matter can act as a flocculant organic matter content significantly enhanced the colloid stability. In soils of less than 5% organic C, water-dispersible colloid content was expected to be significantly higher. In soils of higher oxalate-extractable Al and Fe contents, colloids remaining in suspension were lower. This indicated that amorphous oxides and hydroxides play important stabilizing roles in soil structure and can stabilize soil clay against dispersion. Therefore in soils of higher pH, lower organic matter, and lower amorphous clay minerals, the stability of water-dispersible colloids and the potential of colloid-mediated transport of organic chemicals to groundwater could be higher.

토양 중에서 농약을 대공극과 숨골을 통하여 지하수로 이동시킬 수 있는 매체로 작용하는 물분산성 콜로이드 함량과 그 안정성은 여러 가지 토양의 이화학적 특성에 의해 결정된다. 본 연구에서는 제주도 감귤원에서 채취한 30개 토양을 사용하여 pH, 유기물, oxalate 용액 추출성 Al과 Fe 등이 물분산성 콜로이드의 함량에 미치는 영향을 조사하였다. 토양의 pH가 증가할수록 물분산성 콜로이드의 함량이 높았으며, pH 5$\sim$6 이상의 토양에서는 표면 음전하의 증가에 따라 콜로이드의 안정성이 높아질 가능성이 많은 것으로 나타났다. 낮은 pH 조건에서는 표면 음전하의 감소와 함께 활성 Al 또는 Fe 함량이 증가함에 따라 콜로이드의 응집 현상이 촉진되는 것으로 나타났다. 물분산성 콜로이드의 함량은 콜로이드의 입단화를 촉진시킬 수 있는 토양의 유기물 함량과 반비례하였으며, 유기탄소 함량 5% 이하의 토양에서 특히 물분산성 콜로이드의 함량이 많게 나타날 가능성이 높은 것으로 나타났다. Oxalate 용액 추출성 Al과 Fe 함량 또한 분산성 콜로이드의 함량과 반비례하였으며, Al과 Fe의 산화물 또는 수산화물들 그리고 치의 유기물 복합체는 토양 중에서 콜로이드 형태로 존재할 수도 있으나 점토광물의 입단화를 촉진시키는 결합제로 작용함으로써 물분산성 콜로이드의 분산을 억제하는 것으로 판단되었다.

Keywords

References

  1. McCarthy, J. F. and Zachara, J. F. (1989) Subsurface transport of contaminants, Environ. Sci. Technol. 27, 667-676 https://doi.org/10.1021/es00041a010
  2. Lafrance, P., Banton, O., Campbell, P. G. C. and Villeneuve, J. P. (1990) A complexation-adsorption model describing the influence of dissolved organic matter on the mobility of hydrophobic compounds in groundwater, Water Sci. Tech. 22, 15-22
  3. Thomas, G. W. and Phillips, R. E. (1979) Consequence of water movement in macropores, J. Environ. Qual. 8, 149-152 https://doi.org/10.2134/jeq1979.00472425000800020002x
  4. Seta, A. K. and Karathanasis, A. D. (1997) Atrazine adsorption by soil colloids and co-transport through subsurface environments, Soil Sci. Soc. Am. J. 61, 612-617 https://doi.org/10.2136/sssaj1997.03615995006100020034x
  5. Ballard, T. M. (1971) Role of humic carrier substances in DDT movement through forest soil, Soil Sci. Soc. Am. J. 35, 145-147 https://doi.org/10.2136/sssaj1971.03615995003500010041x
  6. Vinten, J. A., Yaron, B. and Nye, P. H. (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles, J. Agric. Food Chem. 31, 662-664 https://doi.org/10.1021/jf00117a048
  7. Enfield, C. G., Bengtsson, G. and Lindqvist, R. (1989) Influence of macromolecules on chemical transport, Environ. Sci. Technol. 23, 1278-1286 https://doi.org/10.1021/es00068a015
  8. Dunnivant, F. M., Jardine, P. M., Taylor, D. L. and McCarthy, J. F. (1992) Transport of naturally occurring dissolved organic carbon in laboratory columns containing aquifer material, Soil Sci. Soc. Am. J. 56, 437-444 https://doi.org/10.2136/sssaj1992.03615995005600020016x
  9. van Olphen, H. (1977) Introduction to Clay Colloid Chemistry, 2nd ed., John Wiley and Sons, New York
  10. Song, K. C. (1989) Andic properties of major soils in Cheju island, Ph. D. Thesis, Seoul National University, Seoul, Korea
  11. Nelson, D. W. and Sommers, L. E. (1982) Total carbon, organic carbon, and organic matter, In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Page, A. L. et al. (ed.), Soil Science Society of America, Madison, WI
  12. Seta, A. K. and Karathanasis, A. D. (1997) Stability and transportability of water-dispersible soil colloids, Soil Sci. Soc. Am. J. 61, 604-611 https://doi.org/10.2136/sssaj1997.03615995006100020033x
  13. Sposito, G. (1989) The Chemistry of Soils, Oxford University Press, New York
  14. Sparks, D. L. (1995) Environmental Soil Chemistry, Academic Press, New York
  15. Shin, J. S. and Tavernier, R. (1988) Composition and genesis of volcanic ash soils in Jeju island, II. Mineralogy of sand, silt and clay fractions, J. Miner. Soc. Korea 1, 40-47
  16. Goldberg, S., Kapoor, B. S. and Rhoades, J. D. (1990) Effect of aluminum and iron oxides and organic matter on flocculation and dispersion of arid zone soils, Soil Sci. 50, 588-593
  17. Jekel, M. R. (1986) The stabilization of dispersed mineral particles by adsorption of humic substances, Water Res. 20, 1543-1554 https://doi.org/10.1016/0043-1354(86)90119-3
  18. Shanmuganathan, R. T. and Oades, J. M. (1983) Influence of anions on dispersion and physical properties of the A horizon of a red-brown earth, Geoderma 29, 257-277 https://doi.org/10.1016/0016-7061(83)90091-5
  19. Durgin, P. B. and Chaney, J. G. (1984) Dispersion of kaolinite by dissolved organic matter from Douglas-fir roots, Can. J. Soil Sci. 64, 445-455 https://doi.org/10.4141/cjss84-045
  20. Shin, J. S. and Stoops, G. (1988) Composition and genesis of volcanic ash soils in Jeju island, I. Physico-chemical and macro-micromorphological properties, J. Miner. Soc. Korea 1, 32-39
  21. McNeal, B. L., Layfield, D. A., Norvell, W. A. and Rhoades, J. D. (1968) Factors influencing hydraulic conductivity of soils in the presence of mixed salt solutions, Soil Sci. Soc. Am. Proc. 32, 187-190 https://doi.org/10.2136/sssaj1968.03615995003200020012x
  22. Shoji, S., Nanzyo, M. and Dahlgren, R. (1993) Classification of volcanic ash soils, In Volcanic Ash Soils; Genesis, Properties and Utilization, Soji et al. (ed.), Elservier Science Publishers, New York