• Title/Summary/Keyword: Groundwater Resources Management

Search Result 219, Processing Time 0.029 seconds

Evaluation of Percolation Rate of Bedrock Aquifer in Coastal Area (해안지역 암반대수층의 침누수량 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Park, Joo-Wan;Yoon, Jeong Hyoun;Cheong, Jae-Yeol;Park, Sun Ju;Jun, Seong-Chun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do (토지이용이 농업소유역의 수질에 미치는 영향)

  • Choe, Jung-Dae;Lee, Chan-Man;Choe, Ye-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.501-510
    • /
    • 1999
  • Stream and groundwater qualities of small agricultural watershed in Kangwon Probince, Korea were monitored 1 to 2 years, and the relationships between stream and groundwater qualities and seasonal water quality changes analyzed. Flooded paddy fields influenced groundwater level and quality during rice culture. The differences between groundwater levels during rice culture and non-culture spans were between 0.8 and 2.91 m. Seasonal changes of total nitrogen and nitrate nitrogen concentrations of stream and groundwater were very similar and groundwater quality was thought to have a profound impact on stream quality of the research watersheds. Suspended solids and BOD maintained the first degree stream water quality throughout the monitoring period except for a few and short flooding spans. The concentrations of total phosphorus and total bacteria of both waters showed wide variations and any seasonal trends were not observed. Long-term monitoring studies on small rural watersheds were recommended to understand the pattern of both stream and groundwater quality changes with respect to land use, season and cultural practice, and to apply the results to develop effective water quality management policies for large river and domestic water supply systems.

  • PDF

Groundwater vulnerability assessment in the southern coastal sedimentary basin of Benin using DRASTIC, modified DRASTIC, Entropy Weight DRASTIC and AVI

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.152-152
    • /
    • 2021
  • The importance of groundwater has long been recognized, but the ground water potential to become contaminated as a result of human activities has only been recognized in recently. Before 1980 it was thought that soils served as filters, preventing harmful substances deposited at the surface from migrating into groundwater. Today it is known that soils have a finite capacity to protect groundwater. It can be contaminated from divers sources. Therefore, Assessment of aquifer vulnerability to pollution is essential for the protection and management of groundwater and land use planning. In this study, we used DRASTIC and AVI for groundwater vulnerability to contamination assessment. the different methods were applied to the southern coastal sedimentary basin of Benin and DRASTIC method was modified in two different steps. First, we modified DRASTIC by adding land use parameter to include the actual pollution sources (DRASTICLcLu) and second, classic DRASTIC weights was modified using Shannon's entropy (Entropy weight DRASTIC). The reliability of the applied approaches was verified using nitrate (NO3-) concentration and by comparing the overall vulnerability maps to the previous researches in the study area and in the world. The results from validation showed that the addition of landcover/land use parameter to the classic DRASTIC helps to improve the method for better definition of the vulnerable areas in the basin and also, the weight modification using entropy improved better the method because Entropy weight DRASTICLcLu showed the highest correlation with nitrate concentration in the study basin. In summary the weight modification using entropy approach reduced the uncertainty of the human subjectivity in assigning weights and ratings in the standard DRASTIC.

  • PDF

Implications of European Union's Groundwater Nitrate Management Policies for Korea's Sustainable Groundwater Management (유럽연합의 지하수 질산염 관리정책의 우리나라 지속가능한 지하수관리에의 시사점)

  • Junseop Oh;Jaehoon Choi;Hyunsoo Seo;Ho-Rim Kim;Hyun Tai Ahn;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.271-280
    • /
    • 2024
  • This study examines the European Union (EU)'s policies on managing nitrate contamination in groundwater and provides implications for the future groundwater management in South Korea. Initiated by the 1991 Nitrate Directive, the EU has pursued a multifaceted approach to reduce agricultural nitrate pollution through sustainable ('good') farming practices, regular nitrate level monitoring, and designating Nitrate Vulnerable Zones. Further policy integrations, like the Water Framework Directive and Groundwater Directive, have established comprehensive protection strategies, including the use of pollutant threshold values. Recently, the 2019 Green Deal escalated efforts against nitrates, aligning with broader environmental and climate objectives. This review aims to explore these developments, highlighting key mitigation strategies against nitrate pollution, and providing valuable insights for the future sustainable groundwater nitrate management in South Korea, emphasizing the importance of preventive measures and collaborative efforts to restore and improve groundwater quality.

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

The Modified Eulerian-Lagrangian Formulation for Cauchy Boundary Condition Under Dispersion Dominated Flow Regimes: A Novel Numerical Approach and its Implication on Radioactive Nuclide Migration or Solute Transport in the Subsurface Environment

  • Sruthi, K.V.;Suk, Heejun;Lakshmanan, Elango;Chae, Byung-Gon;Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • The present study introduces a novel numerical approach for solving dispersion dominated problems with Cauchy boundary condition in an Eulerian-Lagrangian scheme. The study reveals the incapability of traditional Neuman approach to address the dispersion dominated problems with Cauchy boundary condition, even though it can produce reliable solution in the advection dominated regime. Also, the proposed numerical approach is applied to a real field problem of radioactive contaminant migration from radioactive waste repository which is a major current waste management issue. The performance of the proposed numerical approach is evaluated by comparing the results with numerical solutions of traditional FDM (Finite Difference Method), Neuman approach, and the analytical solution. The results show that the proposed numerical approach yields better and reliable solution for dispersion dominated regime, specifically for Peclet Numbers of less than 0.1. The proposed numerical approach is validated by applying to a real field problem of radioactive contaminant migration from radioactive waste repository of varying Peclet Number from 0.003 to 34.5. The numerical results of Neuman approach overestimates the concentration value with an order of 100 than the proposed approach during the assessment of radioactive contaminant transport from nuclear waste repository. The overestimation of concentration value could be due to the assumption that dispersion is negligible. Also our application problem confirms the existence of real field situation with advection dominated condition and dispersion dominated condition simultaneously as well as the significance or advantage of the proposed approach in the real field problem.

A Method of Estimating Conservative Potential Amount of Groundwater (보수적 지하수 개발가능량 산정 방안)

  • Chung, Il-Moon;Kim, Nam Won;Lee, Jeongwoo;Lee, Jeong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1797-1806
    • /
    • 2014
  • By far, groundwater management has been conducted by 'safe yield' policy based on the estimation of annual average of groundwater recharge throughout the world. However, as groundwater recharge show spatiotemporal variation, dynamic analysis must be carried out to evaluate the sustainable groundwater resources. In this study, an integrated surface-groundwater model, SWAT-MODFLOW was used to compute the spatial distribution of groundwater recharge in Gyungju region. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. The conservative methods for estimating recharge rates of 10 year drought frequency in subbains are newly suggested and compared with the existing values of potential amount of groundwater development. This process will promote the limitations for existing precesses used for computing potential amount of groundwater development.

Managing Groundwater Resources in New Zealand to Account for Environmental Change

  • Davidson, Peter William
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.40-45
    • /
    • 2007
  • Water regulators in New Zealand have recognised the need to adapt water allocation regimes and water permit conditions to reflect the likelihood of lower catchment yield on the east coast from 2030 due to climate change. Water management mechanisms to protect the environment and maintain the reliability of other water users are currently being applied or assessed in Marlborough province. These include seasonal water quota based on spring aquifer status, linking water use to environmental triggers to avoid seawater intrusion or spring depletion; and redefining water permit entitlements to account for recharge variability.

  • PDF

Characterization and Management of Forest Water Resource viewed from Hydrogeological Viewpoint (지구과학자 입장에서 본 산림수자원의 특성과 관리)

  • Kim, Yeonghwa;Choi, Jung-Kee
    • Journal of Forest and Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2004
  • Some effective management schemes have been drawn up by reviewing the function and role of the forest in the viewpoint of groundwater. It is desirable for us to seek an model combined with existing green dam and under dam. Another model combined with under dam and divergent dam is also considered to be necessary depending on its geology. These can be an effective means in the present situation where large dam is not easy to be constructed in spite of growing demand of securing additional water resources.

  • PDF

지하수 유동(MODFLOW) 및 수질(MOC3D) 모형과 ArcView를 결합한 지하수환경 예측 시스템의 개발

  • 김준현;한영한;김정욱;최윤호
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.1-4
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic information system, and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW,MOC3D) and GIS (ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF