• Title/Summary/Keyword: Groundwater Flow

Search Result 1,021, Processing Time 0.043 seconds

지하수 유동 모텔을 이용한 지하수위 변동법의 적용성 분석

  • 구민호;이대하
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.28-31
    • /
    • 2002
  • The water level fluctuation (WLF) method is a conventional method for quantifying groundwater recharge by multiplying the specific yield to the water level rise. A 2-D unconfined flow model with a time series of the recharge rate is developed. It is used for elucidating the errors of the WLF method which is implicitly based on the tank model where the horizontal flow in the saturated zone is ignored. Simulations show that the recharge estimated by the WLF method is underestimated for the observation well near the discharge boundary. This is due to the fact that the hydraulic stress resulting from the recharge is rapidly dissipating by the horizontal flow near the discharge boundary Simulations also reveal that the recharge was significantly underestimated with increase in the hydraulic conductivity and the recharge duration, and decrease in the specific yield.

  • PDF

Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes (방사성폐기물 지하처분장에 대한 가상의 사례 연구를 위한 KURT 부지의 지하수 유동 모의)

  • Ko, Nak-Youl;Park, Kyung Woo;Kim, Kyung Su;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2012
  • Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.

국가 지하수 관측망의 수위 및 온도 자료를 이용한 함양량 산정

  • 박창희;구민호;이대하;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.351-356
    • /
    • 2002
  • Groundwater recharge rate was estimated by applying the groundwater level fluctuation method utilizing Theis (1937) approach with specific yield estimation technique of Shevenell (1996) and the temperature method using observed data from National Groundwater Observation Stations. Results based on analysis of water level observation data of 10 alluvium wells reveal that the recharge rates for 5 wells of Kum river area range 3.7~25.0% and those for 5 wells of Nakdong river area range 3.6~21.7%. Results obtained from the temperature method based on water temperature data indicated that the upward flow resulted from evapotranspiration is dominant for 4 wells of the Kum river area and 5 wells of the Nakdong river area. The other wells showed the downward flow which is related to groundwater recharge in these areas.

  • PDF

Hydraulic Watershed Classification and Analysis of Flow Characteristics of Groundwater on Jeju Island (제주도 지하수 유역의 적절성 평가와 수리학적 유역설정)

  • Kim, Min-Chul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.423-433
    • /
    • 2019
  • This study was carried out to identify the problems of the underground watersheds on Jeju Island, and to establish the hydraulic groundwater basin to be used as basis for the analysis of the groundwater model. In order to evaluate the adequacy of the groundwater basin on Jeju Island, a correlation analysis between elevation and groundwater level was conducted using data from 125 observation wells. The analysis, conducted with an elevation step of 100 m, exhibited values of R2 in the range 0.1653-0.8011. No clear correlation was observed between elevation and groundwater level. In particular, the eastern and western areas showed an inverse proportionality between elevation and groundwater level. The Kriging technique was used to analyze the underground water level data and to define the equipotential lines for all areas of Jeju Island. Eight groundwater watersheds were delineated by considering the direction of groundwater flow, the positions of the observation wells, and the long and short axes of the watersheds.

Evaluation of Groundwater Flow for the Kap-cheon Basin (갑천 유역의 지하수 유동 평가)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.431-446
    • /
    • 2007
  • Groundwater flow in a basin is greatly affected by many hydrogeological and hydrological characteristics of the basin. A groundwater flow model for the Kap-cheon basin ($area=648.3km^2$) in the Geum river basin was established using MODFLOW by fully considering major features obtained from observed data of 438 wells and 24 streams. Furthermore, spatial groundwater recharge distribution was estimated employing accurately calibrated watershed model developed using SWAT, a physically semi-distributed hydrological model. Model calibration using observed groundwater head data at 86 observation wells yielded the deterministic coefficient of 0.99 and the water budget discrepancy of 0.57%, indicating that the model well represented the regional groundwater flow in the Kap-cheon basin. Model simulation results showed that groundwater flow in the basin was strongly influenced by such factors as topological features, aquifer characteristics and streams. The streams in mountainous areas were found to alternate gaining and losing steams, while the streams in the vicinity of the mid-stream and down-stream, especially near the junction of Kap-cheon and Yudeong-cheon, areas were mostly appeared as gaining streams. Analysis of water budget showed that streams in mountainous areas except for the mid-stream and up-stream of Yudeong-cheon were mostly fed by groundwater recharge while the streams in the mid and down-stream areas were supplied from groundwater inflows from adjacent sub-basins. Hence, it was concluded that the interactions between surface water-groundwater in the Kap-cheon basin would be strongly inter-connected with not only streams but also groundwater flow system itself.

Influence of ambient groundwater flow on DNAPL migration in a fracture network

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.43-46
    • /
    • 2003
  • We consider influences of the aperture variation and the ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which is conducted using a two-dimensional random fracture network model. The results show that the aperture variation and ambient groundwater flow can be significant factors controlling DNAPL migration path within fracture networks.

  • PDF

Analysis of Groundwater Discharge into the Geumjeong Tunnel and Baseflow Using Groundwater Modeling and Long-term Monitoring (금정터널내의 지하수 유출량과 기저유출량 변화 분석)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Yu, Il-Ryun;Whang, Hak-Soo;Kim, Sang-Hyun;Kim, Moon-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1691-1703
    • /
    • 2015
  • When constructing tunnels, it is important to understand structural, geological and hydrogeological conditions. Geumgeong tunnel that has been constructed in Mt. Geumjeong for the Gyeongbu express railway induced rapid drawdown of groundwater in the tunnel construction area and surroundings. This study aimed to analyze groundwater flow system and baseflow using long-term monitoring and groundwater flow modeling around Geumgeong tunnel. Field hydraulic tests were carried out in order to estimate hydraulic conductivity, transmissivity, and storativity in the study area. Following the formula of Turc and groundwater flow modeling, the annual evapotranspiration and recharge rate including baseflow were estimated as 48% and 23% compared to annual precipitation, respectively. According to the transient modeling for 12 years after tunnel excavation, baseflow was estimated as $9,796-9,402m^3/day$ with a decreasing tendency.

Distribution of Rare Earth Elements and Their Applications as Tracers for Groundwater Geochemistry - A Review

  • Hwang, Heejin;Nyamgerel, Yalalt;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.383-389
    • /
    • 2021
  • Several studies investigating the behavior and environmental distribution of rare earth elements (REEs) have been reviewed to determine the geochemical processes that may affect their concentrations and fractionation patterns in groundwater and whether these elements can be used as tracers for groundwater-rock interactions and groundwater flow paths in small catchments. Inductively coupled plasma-mass spectrometry (ICP-MS), equipped with an ultrasonic nebulizer and active-film multiplier detector, is routinely used as an analytical technique to measure REEs in groundwater, facilitating the analysis of dissolved REE geochemistry. This review focuses on the distribution of REEs in groundwater and their application as tracers for groundwater geochemistry. Our review of existing literature suggests that REEs in ice cores can be used as effective tracers for atmospheric particles, aiding the identification of source regions.

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.