DOI QR코드

DOI QR Code

Distribution of Rare Earth Elements and Their Applications as Tracers for Groundwater Geochemistry - A Review

  • Received : 2021.06.26
  • Accepted : 2021.08.12
  • Published : 2021.08.31

Abstract

Several studies investigating the behavior and environmental distribution of rare earth elements (REEs) have been reviewed to determine the geochemical processes that may affect their concentrations and fractionation patterns in groundwater and whether these elements can be used as tracers for groundwater-rock interactions and groundwater flow paths in small catchments. Inductively coupled plasma-mass spectrometry (ICP-MS), equipped with an ultrasonic nebulizer and active-film multiplier detector, is routinely used as an analytical technique to measure REEs in groundwater, facilitating the analysis of dissolved REE geochemistry. This review focuses on the distribution of REEs in groundwater and their application as tracers for groundwater geochemistry. Our review of existing literature suggests that REEs in ice cores can be used as effective tracers for atmospheric particles, aiding the identification of source regions.

Keywords

Acknowledgement

This work was supported by two research grants, KOPRI research grant (PE21100) and the National Research Council of Science & Technology (NST) grant of the Korea government (MSIP) (CAP-17-05-KIGAM).

References

  1. Alibo, D. S., and Nozaki, Y., 1999, Rare earth elements in seawater: Particle association. Shale- normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363-372. https://doi.org/10.1016/S0016-7037(98)00279-8
  2. Anders, E., and Ebigara M., 1982, Solar-system abundance of the elements. Geochimica et Cosmochimica Acta, 46, 2363-2380. https://doi.org/10.1016/0016-7037(82)90208-3
  3. Banks, D., Hall, G., Reimann, C., and Siewers, U., 1999, Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Applied Geochemistry, 14, 27-39. https://doi.org/10.1016/S0883-2927(98)00037-7
  4. Bau, M., and Dulski, P., 1996, Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Letters, 143, 245-255. https://doi.org/10.1016/0012-821X(96)00127-6
  5. Biddau, R., Cidu, R., and Frau, F., 2002, Rare earth elements in waters from the albite-bearing granodiorites of Central Sardinia, Italy. Chemical Geology, 182, 1-14. https://doi.org/10.1016/S0009-2541(01)00272-8
  6. Brookins, D. G., 1989, Aqueous geochemistry of rare earth elements. In Lipin, B. R. and McKay, G. A. (Eds), Geochemistry and mineralogy of rare earth elements. Mineral. Soc. Am., pp. 201-255 (Chapter 8).
  7. Chung, C-H., Brenner, I., and You, C-F., 2009, Comparison of microconcentric and membrane-desolvation sample introduction systems for determination of low rare earth element concentrations in surface and subsurface waters using sector field inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B, 64, 849-856. https://doi.org/10.1016/j.sab.2009.06.013
  8. Dia, A., Gruau G., Olivie- Lauquet, G., Riou, C., Molenat, J., and Curmi, P., 2000, The distribution of rare earth elements in groundwater: Assessing the role of sourcerock composition, redox changes and colloidal particles. Geochimica et Cosmochimica Acta, 64, 4131-4151. https://doi.org/10.1016/S0016-7037(00)00494-4
  9. Elbaz- Poulichet, F., and Dupuy, C., 1999, Behavior of rare earth elements at the freshwater- seawater interface of two acid mine rivers: the Tinto and Odiel (Andalucia, Spain). Applied Geochemistry, 14, 1063-1072. https://doi.org/10.1016/S0883-2927(99)00007-4
  10. Elderfield, H., and Greaves, M. J, 1982, The rare earth element in seawater. Nature, 296, 214-219. https://doi.org/10.1038/296214a0
  11. Feng, X., Kirchner, J. W., Renshaw, C. E., Osterhuber, R. S., Klaue, B., and Taylor, S., 2001, A study of solute transport mechanisms using rare earth element tracers and artificial rainstorms on snow. Water Resources Research, 37, 1425-1435. https://doi.org/10.1029/2000WR900376
  12. Gabrielli, P., Barbante, C., Turetta, C., Marteel, A., Boutron, C., Cozzi, G., Cairns, W., Ferrari, C., Cescon, P., 2006, Direct Determination of Rare Earth Elements at the Subpicogram per Gram Level in Antarctic Ice by ICP-SFMS Using a Desolvation System. Analytical Chemistry, 78, 1883-1889. https://doi.org/10.1021/ac0518957
  13. Gromet, L. P., Dymek, R. F., Haskin, L. A., and Korotev, R. L, 1984, The "North American shale composite": Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
  14. Henderson, P., 1984, Rare earth element geochemistry. Elsevier, Amsterdam/Oxford/New York/Tokyo.
  15. Johannesson K. H., and Hendry, M. J., 2000, Rare earth element geochemistry of groundwaters from a thick till and clay- rich aquitard sequence, Saskatchenwan, Canada. Geochimica et Cosmochimica Acta, 64, 1493-1509. https://doi.org/10.1016/S0016-7037(99)00402-0
  16. Johannesson K. H., Stetzenbach K. J., Hodge, V. F., Kreamer D. K., and Zhou, X., 1997, Delineation of ground- water flow systems in the southern great basin using aqueous rare earth elements distributions. Ground Water, 35, 807- 819. https://doi.org/10.1111/j.1745-6584.1997.tb00149.x
  17. Johannesson, K. H., and Stetzenbach, K. J., 1995, Speciation of the rare earth element neodymium in groundwaters of the Nevada Test Site and Yucca Mountain and implications for actinide solubility. Applied Geochemistry, 10, 565-572. https://doi.org/10.1016/0883-2927(95)00028-3
  18. Johannesson, K. H., Farnham I. M., Guo, C., and Stetzenbach K. J., 1999, Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin- fill aquifer, southern Nevada, USA. Geochimica et Cosmochimica Acta, 63, 2697-2708. https://doi.org/10.1016/S0016-7037(99)00184-2
  19. Johannesson, K. H., Lyons, W. B., Fee, J. H., Gaudette, H. E., and McArthur, J. M., 1994, Geochemical processes affecting the acidic groundwaters of Lake Gilmore, Yilgarn Block, Western Australia: a preliminary study using neodymium, samarium, and dysprosium. Journal of Hydrology, 154, 271-289. https://doi.org/10.1016/0022-1694(94)90221-6
  20. Johannesson, K. H., Lyons, W. B., Yelken, M, A., Gaudette, H. E., Stetzenbach, K. J., 1996a, Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth elements enrichments. Chemical Geology, 133, 125-144. https://doi.org/10.1016/S0009-2541(96)00072-1
  21. Johannesson, K. H., Zhou, X., Cuo, C., Stetzenbach, K. J., Hodge, V. F., 2000a, Origin of rare earth element signature in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164, 239-257. https://doi.org/10.1016/S0009-2541(99)00152-7
  22. Johannesson, K. H., Stetzenbach, K. J., and Hodge, V. F., 1997, Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimica et Cosmochimica Acta, 63, 3605-3618.
  23. Johannesson, K. H., Stetzenbach, K. J., Hodge, V. F., and Lyons, W. B., 1996b, Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth and Planetary Science Letters, 139, 305-319. https://doi.org/10.1016/0012-821X(96)00016-7
  24. Johannesson, K. H., Zhou, X., Guo, C., Stetzenbach, K. J., and Hodge, V. F., 2000b, Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern Californica, USA. Chemical Geology, 164, 239-257. https://doi.org/10.1016/S0009-2541(99)00152-7
  25. Lee, J., H., and Byrne, R., 1993, Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochimica et Cosmochimica Acta, 57, 295-302. https://doi.org/10.1016/0016-7037(93)90432-V
  26. Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y., and Woo, N. C., 2003, Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture- filling calcite. Applied Geochemistry, 18, 135-143. https://doi.org/10.1016/S0883-2927(02)00071-9
  27. Leybourne, M. I., Goodfellow, W. D., Boyle, D. R., and Hall, G, M., 2000, Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn-Pb massive sulphide deposits. Applied Geochemistry, 15, 695-723. https://doi.org/10.1016/S0883-2927(99)00096-7
  28. Liang, S.Y., Lin, W.S., Chen, C.P., Liu, C.W., and Fan, C., 2021, A review of geochemical modeling for the performance assessment of radioactive waste disposal in a subsurface system. Applied Science, 11, 5879. https://doi.org/10.3390/app11135879
  29. Liu, H., Guo, H., Xing, L., Zhan, Y., Li, F., Shao, J., Niu, H., Liang, X., and Li, C., 2016, Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. Journal of Asian Earth Sciences, 117, 33-51. https://doi.org/10.1016/j.jseaes.2015.11.021
  30. McCarthy, J. F., Sanford, W. E., and Staford, P. L., 1998, Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter. Environmentall Science Technology, 32, 3901-3906. https://doi.org/10.1021/es971004f
  31. Moller, P., Dulski, P., Bau, M., Knappe, A., Pekdeger, A., Jarmersted C. S., 2000, Anthropogenic gadolinium as a conservative tracer in hydrology. Journal of Geochemical Exploration, 69-70, 409-414. https://doi.org/10.1016/S0375-6742(00)00083-2
  32. Nesbitt, H. W., 1979, Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206-210. https://doi.org/10.1038/279206a0
  33. Noack, C.W., Dzombak, D.A., and Karamalidis, A.K., 2014, Rare earth element distributions and trends in natural waters with a focus on groundwater. Environmental Science and Technology, 48, 4317-4326. https://doi.org/10.1021/es4053895
  34. Rousseau, T., Sonke, J., Chmeleff, J., Candaudap, F., Lacan, F., Boaventura, G., Seyler, P., Jeandel., C., 2013, Rare earth element analysis in natural waters by multiple isotope dilution-sector field ICP-MS. Journal of Analytical Atomic Spectrometry, 28, 573-584. https://doi.org/10.1039/c3ja30332b
  35. Serrano, M. J. G., Sanz, L. F. A., and Nordstrom, D. K., 2000, REE speciation in low-temperature acidic waters and the competitive effects of aluminum. Chemical Geology, 165, 167-180. https://doi.org/10.1016/S0009-2541(99)00166-7
  36. Smedley, P., 1991. The geochemistry of rare earth elements in groundwater from the Carmenellils area, southwest England. Geochimica et Cosmochimica Acta, 55, 2767-2779. https://doi.org/10.1016/0016-7037(91)90443-9
  37. Stetzenbach, K. J., Amano, M., Kreamer, D. K., and Hodge, V. F. 1994, Testing the limits of ICP- MS determination of trace elements in ground water at the parts-per-trillion level. Ground Water, 32, 976-985. https://doi.org/10.1111/j.1745-6584.1994.tb00937.x
  38. Stetzenbach, K. J., Farnham, I. M., Hodge, V. F., and Johannesson, K. H., 1999, Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer. Hydrological Processes, 13, 2655-2697. https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2655::AID-HYP840>3.0.CO;2-4
  39. Stetzenbach, K. J., Hodge. V. F., Guo, C., Farnham, I. M., and Johannesson, K. H., 2001, Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. Journal of Hydrology, 243, 254- 271. https://doi.org/10.1016/S0022-1694(00)00418-2
  40. Takahashi, Y., Yoshida, H., Sato, N., hama, K., Yusa, Y., and Shimizu, H., 2002, W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranuym deposit, central Japan. Chemical Geology, 184, 311- 335. https://doi.org/10.1016/S0009-2541(01)00388-6
  41. Tricaa, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., and Eikenberg, J., 1999, Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chemical Geology, 160, 139-158. https://doi.org/10.1016/S0009-2541(99)00065-0
  42. Tweed, S.O., Weaver, T.R., Cartwright, I., and Schaefer, B., 2006. Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: An example from the Dandenong Ranges, southeast Australia. Chemical Geology, 234, 291-307. https://doi.org/10.1016/j.chemgeo.2006.05.006
  43. Verplanck, P. L., Antweiler, R. C., Nordstorm, D. K., and Talor, H. E., 2001, Standard reference water samples for rare earth element determination. Applied Geochemistry, 16, 231-244. https://doi.org/10.1016/S0883-2927(00)00030-5
  44. Wegner, A., Gabrielli, P., Wilhelms-Dick, D., Ruth, U., Kriews, M., De Deckker, P., Barbante, C., Cozzi, G., Delmonte, B., Fischer, H., 2012, Change in dust variability in the Atlantic sector of Antarctica at the end of the last deglaciation. Climate of the Past, 8, 135-147. https://doi.org/10.5194/cp-8-135-2012
  45. Worrall, F., and Pearson, D. G., 2001a, The development of acidic groundwaters in coal- bearing strata: Part I. Rare earth element fingerprinting. Applied Geochemistry, 16, 1465- 1480. https://doi.org/10.1016/S0883-2927(01)00018-X
  46. Worrall, F., and Pearson, D. G., 2001b, Water- rock interaction in an acidic mine discharge as indicated by rare earth element patterns. Geochimica et Cosmochimica Acta, 65, 3027-3040. https://doi.org/10.1016/S0016-7037(01)00662-7
  47. Yan, Z., Liu. G., Sun, R., Tang, Q., Wu, D., Wu, B., and Zhou, C., 2013, Geochemistry of rare earth elements in groundwater from the Taiyuan Formation limestone aquifer in the Wolonghu Coal Mine, Anhui province, China. Journal of Geochemical Exploration, 135, 54-62. https://doi.org/10.1016/j.gexplo.2012.11.011
  48. Zhang, C., Wang, L., Zhang, S., and Li, X., 1998, Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry, 13, 451-462. https://doi.org/10.1016/S0883-2927(97)00079-6
  49. Zhang, Q., Kang, S., Kaspari, S., Li, C., Qin, A., Mayewski, P., Hou, S., 2009, Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmospheric Research, 94, 300-312. https://doi.org/10.1016/j.atmosres.2009.06.005
  50. Zou, J., Cheng, L., Guo, Y., Wang, Z., Tian, H., and Li, T., 2020, Mineralogical and geochemical characteristics of lithium and rare earth elements in high-sulfur coal from the Donggou mine, Chongqing, Southwestern China. Minerals, 10, 627; doi:10.3390/min10070627.