• Title/Summary/Keyword: Groundhook

Search Result 15, Processing Time 0.027 seconds

Fuzzy Hybrid Control of a Smart TMD for Reduction of Wind Responses in a Tall Building (초고층건물의 풍응답제어를 위한 스마트 TMD의 퍼지 하이브리드제어)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • Fuzzy hybrid control technique with a smart tuned mass damper(STMD) was proposed in this study for the suppression of wind-induced motion of a tall building. To develop the effective control algorithm for a STMD, skyhook and groundhook control algorithms were employed. Usually, skyhook controller can effectively reduce STMD motion and groundhook controller shows good control performance for the reduction of building responses. In this study, fuzzy hybrid controller, which can determine an optimal weighting factor for combining two controllers in real time, was developed to improve the control performance of conventional hybrid controller using weighted sum approach. A 76-story office building was used as an example structure to investigate the performance of the proposed controller. A magnetorheological(MR) damper was used to develop a STMD and the control performance of STMD was evaluated comparing with the passive and active TMD. The numerical studies show that the control effectiveness of a STMD is significantly superior to that of the conventional TMD. It is also shown that fuzzy hybrid controller can effectively adjust skyhook and groundhook control algorithms and reduce both responses of STMD and building.

Application of Semi-active TMD for Floor Vibration Control (바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.49-56
    • /
    • 2007
  • Passive, active and semi-active control system are classified in floor vibration control system by providing control force. This paper discusses the application of a new class of semi-active TMD(MR-TMD), for the reduction or floor vibrations due to machine and human movements. This MR-TMD consists of passive TMD and MR damper. Here, displacement-based control methods are used to assess the performance of this STMD(MR-TMD). And, skyhook and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. If the allowed operation space of tuned mass is limited in MR-TMD system, skyhook algorithm is more efficient than groundhook algorithm for floor vibration control. Hybrid control method demonstrates the efficiency of MR-TMD with respect to another methods.

  • PDF

Structural Vibration Control Using Semiactive Tuned Mass Damper (건물의 내진성능을 향상시키기 위한 반능동 동조질량감쇠 시스템)

  • Moon, Yeong-Jong;Ji, Han-Rok;Jung, Hyung-Jo;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.645-650
    • /
    • 2006
  • This paper presents the results of a study to verify the sufficient control performance of semiactive tuned mass damper and to identify suitable control methods for semiactive tuned mass damper in structural vibration control. In this study, four control algorithms are considered: on-off displacement based groundhook, on-off velocity based groundhook, clipped optimal and maximum energy dissipation algorithm. For semiactive tuned mass damper, MR damper is considered as a controllable damping device and the command voltage is calculated by the control algorithms. Each of the control theory is applied to the three story shear building excited by three earthquakes. The performance of each algorithm is compared with that of conventional tuned mass damper system using evaluation criteria. The simulation results indicate that semiactive tuned mass damper has control efficiency. Among the control algorithms, on-off displacement based control theory shows the best efficacy and robustness.

  • PDF

Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper (인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • In recently, the vibration control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. MR dampers can be controlled with small power supplies and the dynamic range of this damping force is quite large. This MR damper is one of semi-active dampers as a new class of smart dampers. In this study, vibration control effect according to the installation location of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Groundhook control model is applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement responses can be effectively controlled as adjacent buildings are connected at roof floors by MR damper. And acceleration responses can be effectively reduced when two buildings are connected at the mid-stories of adjacent buildings by MR damper. Therefore, the installation floor of the MR damper should be selected with seismic response control target.

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

Application of MR Damper for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 MR 감쇠기의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-67
    • /
    • 2006
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. when TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned nTMDs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations due to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness or STMD with respect to equivalent TMD.

  • PDF

A Control Method of Semi-active TMD for Vibration Control (진동제어를 위한 준능동 TMD의 제어기법)

  • Lee, Ki-Hak;Kim, Gee-Cheol;Lee, Eun-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.53-61
    • /
    • 2007
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. When TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned TMs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations duo to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative or building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness of STMD with respect to equivalent TMD.

  • PDF

Fuzzy Hybrid Control of Semi-active TMD (준능동 TMD의 퍼지 하이브리드 제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.433-436
    • /
    • 2009
  • 본 연구에서는 준능동 TMD(STMD)가 설치된 초고층건물의 풍응답을 효과적으로 저감시키기 위한 퍼지 하이브리드제어기법을 제안하였다. 이를 위하여 STMD의 응답저감에 우수한 성능을 보이는 스카이훅(skyhook) 제어기와 구조물의 응답저감에 뛰어난 그라운드훅(groundhook) 제어알고리즘을 사용하였다. 본 연구에서는 두 제어기를 적절히 조합하기 위하여 최적의 가중치를 실시간으로 결정하는 퍼지 하이브리드제어기를 개발함으로써 일반적인 가중합방식의 하이브리드 제어기법의 성능을 개선하였다. 제안된 제어기의 성능을 검토하기 위하여 풍하중을 받는 76층 사무소 건물을 예제구조물로 사용하였다. MR 감쇠기를 이용하여 STMD를 구성하였고 STMD의 제어성능을 평가하기 위하여 TMD 및 ATMD의 성능과 비교하였다. 수치해석을 통하여 STMD의 제어성능이 TMD에 비하여 월등히 뛰어남을 확인할 수 있었다. 또한 퍼지 하이브리드 제어기법을 사용하면 스카이훅 및 그라운드훅 제어기를 효과적으로 조합하여 STMD와 건물의 응답을 동시에 줄일 수 있음을 확인하였다.

  • PDF