• Title/Summary/Keyword: Ground vibration induced by subway

Search Result 14, Processing Time 0.018 seconds

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

A study on the effect of ground vibration induced by vibrohammer and RCD on adjacent subway tunnel (바이브로 해머 및 RCD 공법 적용시 기존터널에 미치는 진동영향해석)

  • Huh, Young;Nam, Kee-Chun;Kim, Tae-Hyung;Bang, Jin-Ho;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • This paper presents the effect of ground vibration induced by vibrohammer and RCD on adjancent subway tunnel performance using FDM program. Firstly, the stability criteria for structures near vibration source were proposed according to existing data, then peak particle velocity around tunnel was estimated based on detailed information of vibrohammer and existing formula for dynamic loads through numerical analysis. The peak particle velocity induced by RCD bit rotation was also estimated using surveyed data and formula. Consequently, displacement and stress responses were obtained at crown, shoulder and spring line and compared with the criteria to check stability of tunnel.

  • PDF

A Comparison between Measurement Values and Prediction Values of Structure-borne noise induced by Subway (지하철 진동에 의한 구조음 실측치와 예측치 비교)

  • Lee, Tae-Ho;Ann, Yong-Chan;Cho, Jung-Sik;Lee, Ki-Ryung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.817-820
    • /
    • 2014
  • 지하철 인근 지역에서 차량 통과 시 차륜과 레일의 상호작용으로 인한 진동이 지반을 통하여 건물까지 전파되어 구조전달음이 발생하게 된다. 이러한 구조전달음이 발생하는 지하철 인근 지역에서 도로나 주거단지가 새롭게 조성될 예정인 경우, 완공 이후에 발생하는 구조전달음 영향을 사전에 평가하고 대책을 수립하는 것이 요구된다. 본 논문에서는 국내에 위치한 일부 역사에서의 구조전달음을 측정하고 국외의 예측식을 검토하여 구조전달음의 실측치와 예측치를 비교한다. 따라서 국내 지하철의 구조전달음 예측에 대하여 국외 예측식의 타당성을 검토함으로써 향후 건설될 지하구간 역사의 인근 주거지역에 대한 구조전달음을 예측하는데 기초 자료로 활용하고자 한다.

  • PDF

Evaluation of the blast-restriction zone to secure tunnel lining safety (터널라이닝 안전관리를 위한 발파제한영역 평가)

  • Shin, Jong-Ho;Moon, Hoon-Ki;Choi, Kyu-Cheol;Kim, Tae-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 2009
  • In urban areas, blast excavation adjacent to tunnels is carried out frequently. It is generally required to secure static and dynamic stability of nearby tunnel structures for any such activities. Although there is some national guidelines for static safety, there is little guides to risk zoning controling the dynamic behavior of the underground structures. In this study, impacts on the blast-induced vibration are investigated using numerical study. An attempt to define the restricted area of blast adjacent to subway tunnels was also made. Particular concerns were given to tunnel depth and ground types. By carrying out the parametric study on depth and ground patterns, the envelope of blast distance of which dynamic response on the lining is controlled under 1 cm/sec, is established. It is shown that the increase in depth has increased the required safety distance slightly until the distance of 3.5 times of the tunnel diameter. Despite small changes in safety distance, it can be generally said that the effects of depth and stiffness of the ground is not significant in controlling the particle velocity of the tunnel linings.