• Title/Summary/Keyword: Ground sink

Search Result 93, Processing Time 0.017 seconds

Constrution and Application of Underground Facilities Survey System using the 3D Integration Map of Underground Geospatial Information (3차원 지하공간통합지도를 활용한 지하시설물 현장 측량 시스템 구축 및 적용)

  • SONG, Seok-Jin;CHO, Hae-Yong;HEO, Hyun-Min;KIM, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.164-173
    • /
    • 2021
  • Recently, as underground space safety issues such as sink hole, ground subsidence and damage to old underground facilities have been increasing in urban areas, the precise management of underground facilities ins more required. Thus, this study developed a function to that, visualize on Integration Map of Underground Geospatial Information a real-time survey data of underground facilities acquired on site or underground facility survey data acquired through on-site survey after underground facility exploration and developed a function convert to surveying-results. In addition, using the on-site survey performance utilization function in connection with the Integration Map of Underground Geospatial Information developed through this study, the surveying -results obtained with the Total-station at the water pipeline burial construction site in Eunpyeong-gu, Seoul are visualized on the Integration Map of Underground Geospatial Information and On-site verification was performed by converting spatial-information performance files and transmitting the Integration Map of Underground Geospatial Information to the mobile center. Based on this, it was possible to verify the work procedure using the surveying-results in the area where the Integration Map of Underground Geospatial Information was built, and to review the direction of future improvement directions.

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow (찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석)

  • Gu, Yun-Jeong;Song, Bonggeun;Lee, Wonhee;Song, Byunghun;Shin, Junho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.27-35
    • /
    • 2022
  • When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.

Mass Balance of Salts, DIP, DIN and DON in the Gomso Tidal Flat (곰소만 조간대에서 Salts, DIP, TDN의 물질 수지)

  • Jeong Yong-Hoon;Kim Yeong-Tae;Kim Ki-Hyun;Kim Soh-Young;Kim Byung-Hoon;Yang Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.68-81
    • /
    • 2006
  • As one of the on-going projects to investigate the biogeochemical characteristics of tidal flat, we develop seasonal mass balance calculations (or DIP, DIN and DON in Gomso Bay. We have obtained 13-hours time-series data of salinity, tidal current, nutrients, and chlorophyll-a of seawater for spring, dry summer, rainy summer and winter during $1999{\sim}2000$. DIP of $-1.10{\times}10^6g\;P\;day^{-1},\;-4.50{\times}10^5g\;P\;day^{-1}$ was out-fluxed from the bay to the bay proper for spring and dry summer, respectively. Whereas $1.06{\times}10^4g\;P\;day^{-1}$ of net influx of DIP was found during winter and $2.72{\times}10^6g\;P\;day^{-1}$ of net influx was also found during the rainy summer. Therefore we suggest the role of Gomso tidal flat as a source of DIP fur the seasons of spring and summer, but as an opposite role during the rainy summer and winter but much smaller in magnitude. Except winter, the advection process by tidal current is found the most dominant flux among the diverse fluxes of DIP in the bay. Whereas ground water is estimated as the strongest flux of TDN except winter. TDN of $1.38{\times}10^7g\;N\;day^{-1},\;2.45{\times}10^6g\;N\;day^{-1},\;and\;4.65{\times}10^7g\;N\;day^{-1}$ was in-fluxed to the bay from the bay proper far spring, rainy summer and summer, respectively. Only $-1.70{\times}10^7g\;N\;day^{-1}$ of net out-flux was found during the winter. Therefore we suggest the role of Gomso tidal flat as a sink of TDN far the year round except winter.