• Title/Summary/Keyword: Ground settlement monitoring

Search Result 87, Processing Time 0.026 seconds

Development of Automated Monitoring System for Soft Ground Settlement Based on Hole Senor (홀센서 기반의 연약지반 자동 지반침하 계측시스템 개발)

  • Jeon, Je-Sung;Lee, Keun-Ho;Yoon, Dong-Gu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.39-52
    • /
    • 2012
  • Magnetic sensing system and automated monitoring system based on digital hall sensor for ground settlement are developed to change traditional method for monitoring surface settlement and underground settlement by manual type and to overcome technical limits of existing automated settlement monitoring system. It's possible to monitor surface settlement and underground settlement with multi-points at the same time in a single hole with NX size. It was possible to verify technical confidence and stability by several case studies of soft ground improvement project.

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 재하를 고려한 선행재하 공법 적용 연약지반의 현장 계측을 통한 침하량 예측 방법의 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.452-461
    • /
    • 2008
  • Previous settlement prediction method based on settlement monitoring such as hyperbolic, monden method were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considers influence factors of consolidation settlement and increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. As a result, new prediction method is expected to have great applicability and practicability for the prediction of settlement behavior.

  • PDF

Case history in prediction of consolidation settlement and monitoring (준설매립 초연약지반의 압밀침하 거동 및 계측 사례)

  • Jeon, Je-Sung;Lee, Jong-Wook;Im, Eun-Sang;Kim, Jae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1712-1716
    • /
    • 2008
  • Performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area has been conducted. From field monitoring results, excessive ground settlement compared to predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation was occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared to field monitoring results after additional surcharge was applied.

  • PDF

Prediction of Settlement Based on Field Monitoring Data under Preloading Improvement with Ramp Loading

  • Woo, Sang-Inn;Yune, Chan-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.436-452
    • /
    • 2008
  • In this study, the settlement prediction method based on field monitoring data under preloading improvement with ramp loading is developed. Settlement behavior can be predicted with field monitored settlement throughout the entire preloading process including ramp loading followed by constant loading. The developed method is verified by comparing its predicted results with results from physical model tests and field monitoring data.

  • PDF

Development and Application of Integrated Settlement Management System for Construction and Maintenance of Concrete Railway (콘크리트 궤도의 시공 및 유지관리를 위한 침하관리 통합 시스템의 구축 및 활용)

  • Woo, Sang-Inn;Chun, Sung-Ho;Chung, Choong-Ki;Lee, Il-Hwa;Kwon, Oh-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1196-1202
    • /
    • 2007
  • In construction of high speed railway, the fan shape is limited to achieve reduction of required travel time and concrete railway which has structural stability and induces small maintenance cost with allowable ground settlement is recently applied. So construction of concrete railway on soft ground in which considerable ground settlement occurs increases and settlement management in soft ground section is required. Field monitoring on ground movement and integrated geotechnical information system which manages construction, design, and field monitoring data are essential for settlement management of concrete railway subgrade. Site investigation data are also required due to future repair work. Therefore in this study, integrated geotechnical information system for construction and maintenance of concrete railway is developed. The developed system consists of a database and an application program. The database contains site investigation, construction, design, and field monitoring data throughout a railway. Application program performs various functions on managing and utilizing information in the database with graphic visualization of output. And by providing integrating information with comprehensible visual displays, the applicability and effectiveness of the developed system for construction and maintenance management were confirmed.

  • PDF

Stress Monitoring System for Buried Gas Pipeline in Poor Ground (연약지반 배관응력 모니터링 시스템 개발 및 적용)

  • Hong, Seong-Kyeong;Kim, Joon-Ho;Jeong, Sek-Young
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.41-47
    • /
    • 2006
  • This paper introduces stress monitoring system for buried gas pipeline in poor ground. During the six months of improvement construction of poor ground, maximum settlement of gas pipeline is about 40 cm. This value represents relative small compared to the initial settlement estimation of ground improvement construction plan, 90 cm. Also, this paper includes the result of finite element analysis of gas pipeline to confirm safety of pipelines in poor ground. The stress monitoring system for gas pipeline was developed to guarantee the safety of buried gas pipeline in poor ground. Eventually, the ground improvement workings are ended safely and it is proved that the pipeline has no safety problem.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

Lesson and proposal of revised equations from the Pan method application case for soft clay improvement (PBD 공법 시공사례를 통한 교훈 및 개선안 제안)

  • 유한구;조영묵;김종석;박정규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.147-158
    • /
    • 2001
  • In general, two methods have been used to predict settlement of soft ground. One method is Terzaghi's one dimensional consolidation theory which gives time-settlement relationship using the standard consolidation test results. The other is forecasting method of ground settlement to be occured in the future using in-situ monitoring data. The above both methods have some defects in application manner or in itself especially in very deep and soft clayey ground. In view of the lessons and experiences of soft ground improvement projects, several techniques were proposed for more accurate theorectical calculation of consolidation settlement as follows ; ① Subdivision of soft ground, ② Consideration of secondary compression, ③ Using the modified compression index, etc. And also, revised hyperbolic fitting method was suggested to minimize the error of predicted future settlement. In addition, revised De-Beer equation of immediate settlement of loose sandy soil was proposed to overcome the tendency to show too small settlement calculation results by original De-Deer equation. And also, considering the various effects of settlement delay in the improved ground by vertical drains, time-settlement caculation equation(Onoue method) was revised to match the tendency of settlement delay by using the characteristics of discharge capacity decreases of vertical drain with time elapse by the pattern of hyperbolic equation.

  • PDF

An Evaluation of the Settlement and Stability in the Reclaimed Revetment by Field Monitoring Method (현장계측을 이용한 호안의 침하 및 안정성의 평가)

  • Kim, Hyeong-Ju;Yang, Tae-Seon;Choe, Deok-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.149-155
    • /
    • 1992
  • In case of construction of the final refuse disposal site on the ground where 20m soft clay layer is deposited, Sand Compaction Pile(SCP) was driven with a view to increase the strength and reduce the settlement when the reclaimed revetment intend to be constructed first in a short time. Field monitoring method is carried out in order to overcome the problems of settlement and stability in the construction of the reclaimed revetment and the assumed problems in the design of composite ground. In this paper the observed data from monitoring sections are analysed, fedback to the desigh and field, and compared with FEM analysis. Conclusions are as follow: in case of 70% replacement the use of modified soilparameters makes the FEM analysis of SCP possible. In case of 27% replacement, n(stress concentration ratio)=0.2-0.3, B(measured settleme reduction coefficient)=0.43 are evalated. Also, horizontal displacement is remarkably happened around the ground.

  • PDF